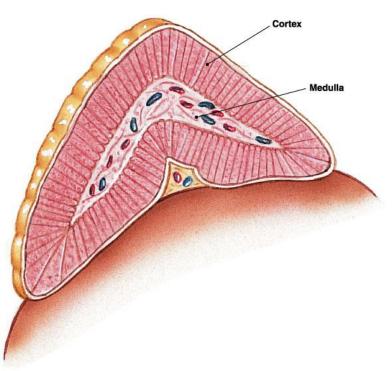


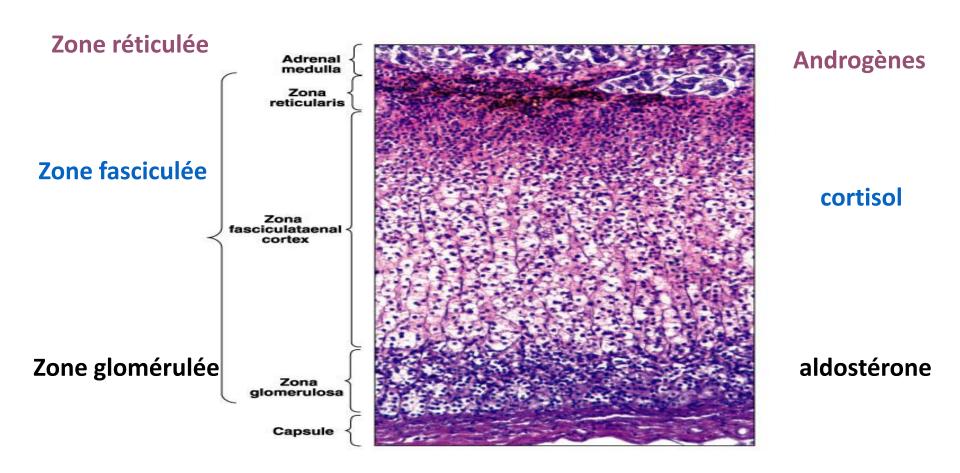
La fonction corticosurrénalienne

V. Gayrard


Physiologie

Ecole Nationale Vétérinaire de Toulouse

23, chemin des Capelles


31076 Toulouse

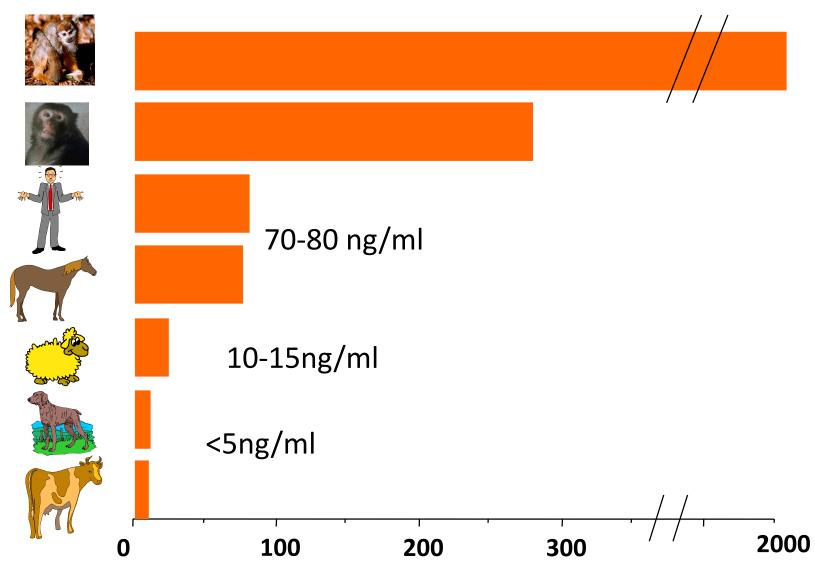
Les glandes surrénales: des glandes hybrides

- Medulla: catécholamines (adrénaline, noradrénaline)
 - Réponse au stress (exercice, hypoglycémie...)
 - Régulation du métabolisme énergétique
 - Effets cardiovasculaires
- Cortex surrénalien

Le cortex surrénalien

La cortex surrénalien

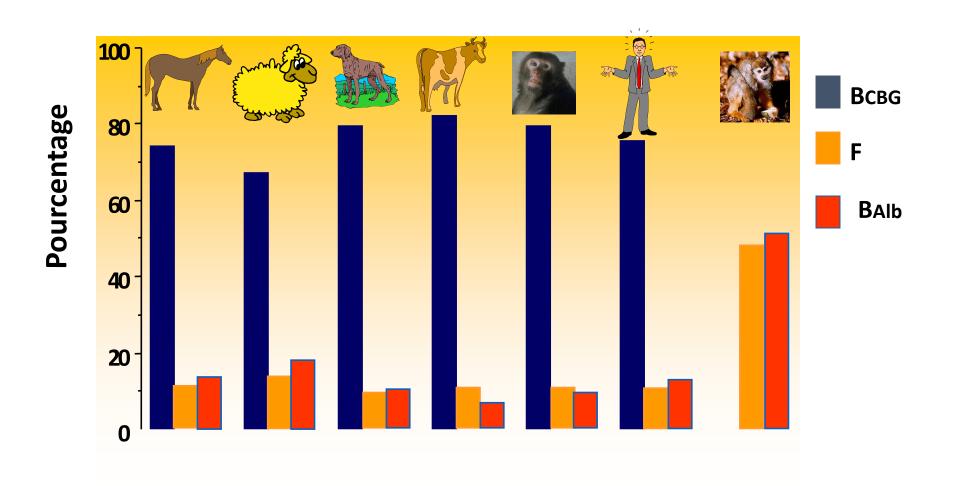
- Corticosurrénales indispensables à la vie
- Trois catégories d'hormones stéroïdiennes:
 - Minéralocorticoïdes (aldostérone): action principale sur les reins
 - Androgènes (déhydroépiandrostérone, androstenedione): conversion périphérique en testostérone (50% androgènes circulants chez la femme: pilosité axillaire)
 - Glucocorticoïdes (cortisol, corticostérone)

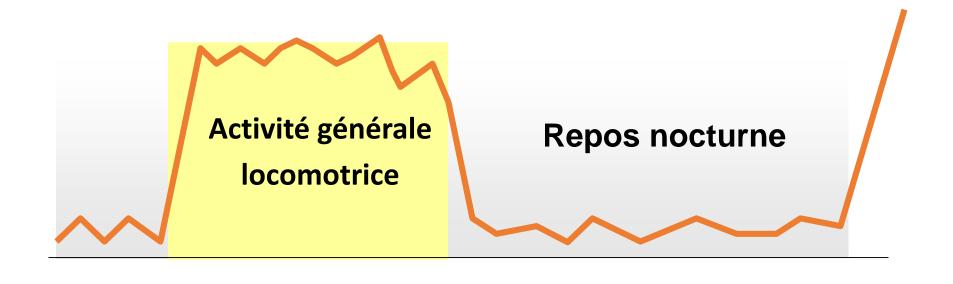

Plan de l'exposé

- I. La cortisolémie
 - 1. Variations interspécifiques
 - 2. Rythmes de sécrétion du cortisol
 - 3. Facteurs de variations
- II. Contrôle de la sécrétion du cortisol
 - 1. Stimulation de la sécrétion par ACTH
 - 2. Contrôle des sécrétions d'ACTH: les facteurs hypothalamiques
 - Le rétrocontrôle négatif du cortisol
- III. Rôles physiologiques du cortisol
 - 1. Réponse intégrée au stress
 - 2. Autres effets

La cortisolémie: variations interspécifiques

Espèce	Rapport cortisol/corticostérone
Brebis	15-20/1
Cheval	2/1 - 24/1
Chat, homme	5/1 - 10/1
Chien	2/1 - 5/1
Vache	1/1
Rat, lapin	0.05/1

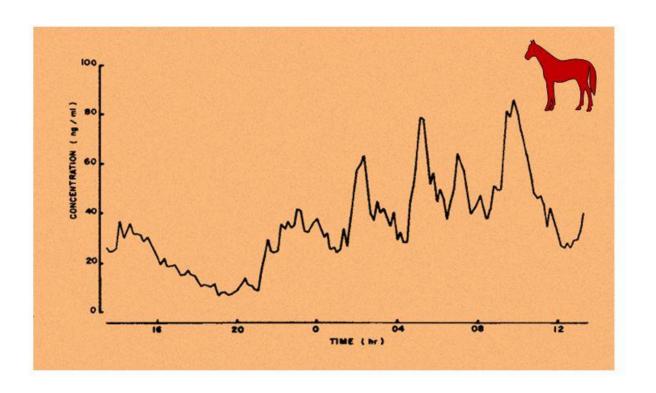

Variations interspécifiques de la cortisolémie (ng/ml)


Liaison aux protéines plasmatiques

- Cortisol plasmatique: 3 formes
 - Forme libre (F)
 - Forme liée de façon non spécifique et non saturable à l'albumine (BAlb)
 - Forme liée de façon spécifique et saturable à la Corticosteroid-Binding Globulin (CBG) ou transcortine (BCBG)

Importance relative des différentes formes de cortisol plasmatique

La cortisolémie: rythme nycthéméral



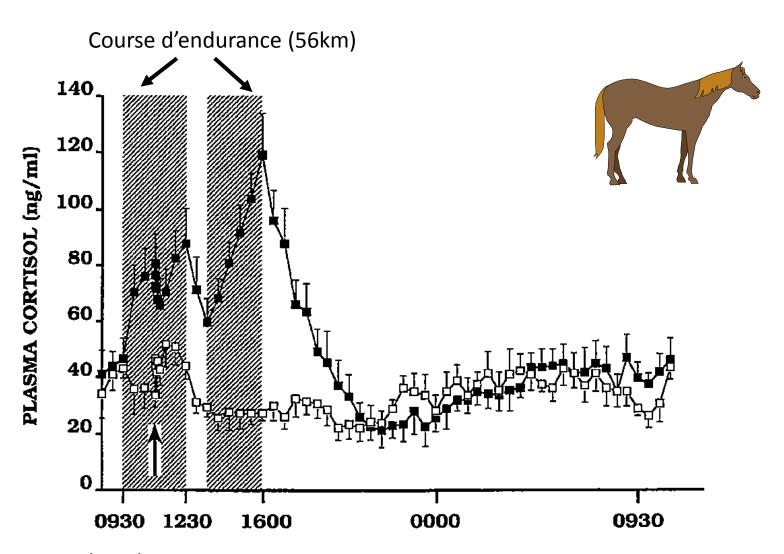
Activité générale locomotrice

Repos diurne

La cortisolémie: rythmes de sécrétion

Un exemple de rythme circadien de la cortisolémie et de pulsatilité de la sécrétion du cortisol

La cortisolémie: facteurs de variation

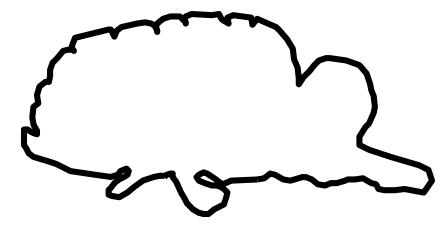

Facteurs endogènes

- Stade physiologique
 - Gestation: augmentation de la cortisolémie
 - Peri-partum: augmentation cortisolémie
- Age
 - Sujet âgé: augmentation cortisolémie chien, homme
 - Théorie vieillissement: effets délétères sur les systèmes neuronaux

La cortisolémie: facteurs de variation

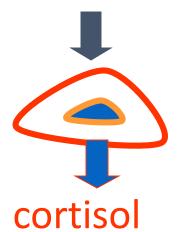
- Facteurs exogènes:
 - Saison
 - Absence de variations saisonnières
 - Comportement alimentaire
 - †cortisolémie après une prise alimentaire
 - Exercice physique
 - †cortisolémie: adaptation physiologique et métabolique à l'exercice
 - Changement environnement social ou spatiotemporel, transport, manipulation
 - ↑ cortisolémie: rôle adaptatif

Effet d'un exercice sur la cortisolémie



Lassourd et al. 1996

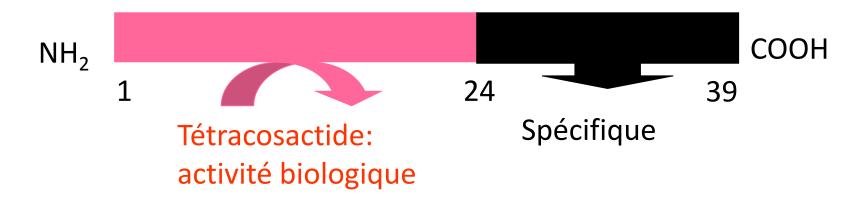
Plan de l'exposé


- I. La cortisolémie
 - 1. Variations interspécifiques
 - 2. Rythmes de sécrétion du cortisol
 - 3. Facteurs de variations
- II. Contrôle de la sécrétion du cortisol
 - 1. Stimulation de la sécrétion par ACTH
 - 2. Contrôle des sécrétions d'ACTH: les facteurs hypothalamiques
 - Le rétrocontrôle négatif du cortisol
- III. Rôles physiologiques du cortisol
 - 1. Réponse intégrée au stress
 - 2. Autres effets

Contrôle de la sécrétion de cortisol

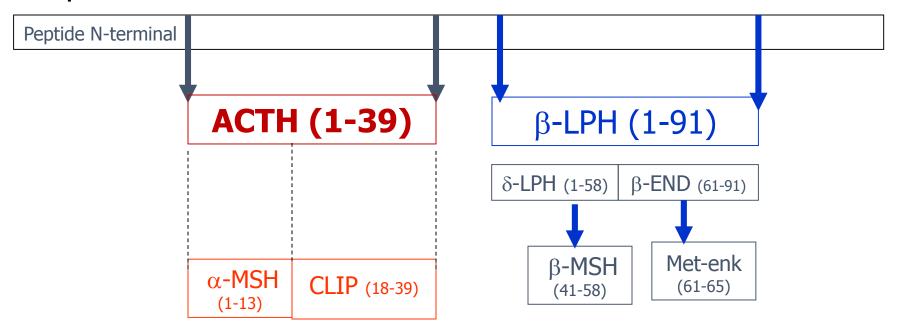
Hypophyse Antérieure: cellules corticotropes

ACTH: Adrenocorticotropic Hormone



Corticosurrénales

Stimulation de la sécrétion par ACTH


ACTH: corticotropine

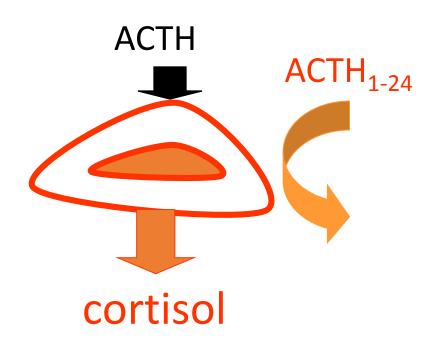
- Cellules corticotropes de l'hypophyse antérieure
- Polypeptide 39 aa PM 4500

ACTH=seule hormone bioactive produite par les cellules corticotropes

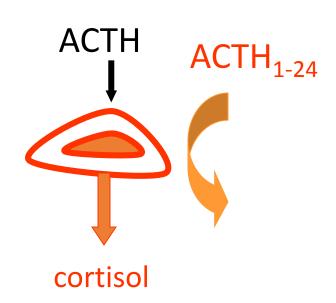
•POMC: pro-opiomélanocortine: Polypeptide précurseur 265 aa

LPH: lipotropine END: endorphine MSH: mélanotropine

CLIP: corticotropin-like peptide Met-enk: met-enképhaline


Mécanismes d'action de l'ACTH

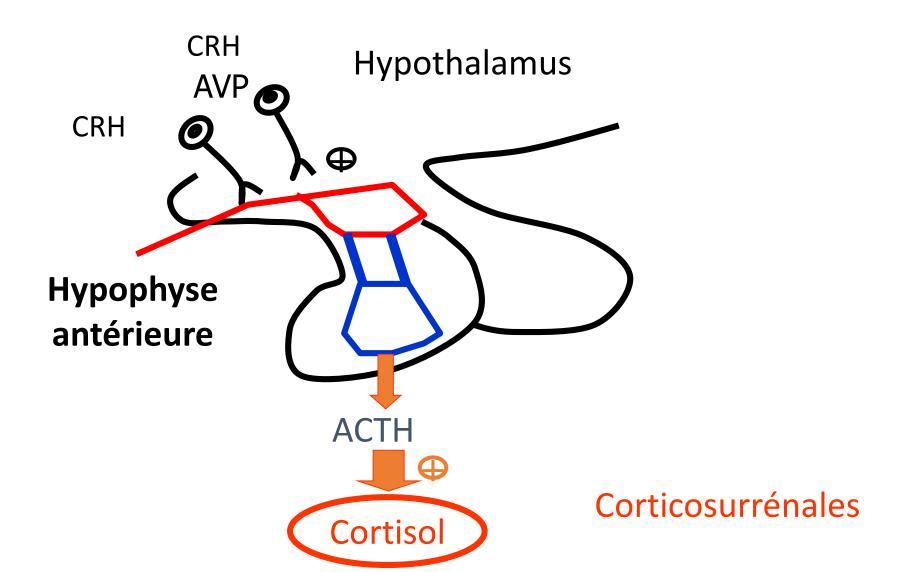
- Récepteur spécifique
- Synthèse de glucocorticoïdes et d'androgènes
 - Effets rapides (quelques min): mobilisation cholestérol, transport dans membrane mitochondrie
 - Effets lents (quelques heures): transcription gènes des enzymes de la stéroïdogenèse
- Action trophique sur les zones fasciculée et réticulée du cortex surrénalien
 - Augmentation de la vascularisation
 - Synthèses protéiques et multiplication des cellules


Mécanismes d'action de l'ACTH

Hypersécrétion ACTH: Maladie de Cushing

Hypopituitarisme

Hypercorticisme Hyperplasie et hypertrophie Sensibilité accrue à l'action d'ACTH



Atrophie Sensibilité diminuée à l'action d'ACTH

ACTH et pigmentation de la peau

- Niveaux supraphysiologiques d'ACTH (exemple: maladie de Cushing)
 - Pigmentation de la peau: synthèse de mélanine par les mélanocytes
 - Liaison de l'ACTH à un niveau élevé sur le récepteur à la mélanocortine (MC1R)

Contrôle de la sécrétion d'ACTH

Contrôle de la sécrétion d'ACTH

 Contrôle stimulateur par les hormones hypothalamiques

CRH: Corticotropin-Releasing Hormone, 41 aa

Noyau paraventriculaire de l'hypothalamus (NPV)

Récepteur à CRH sur les cellules corticotropes

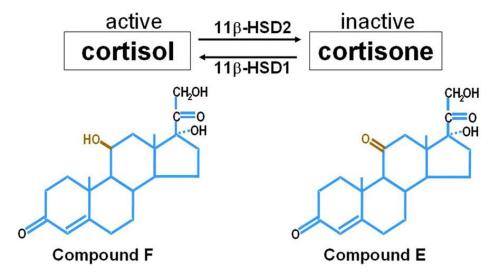
Stimulation de l'expression de la POMC

AVP ou ADH: Arginine Vasopressine, 9 aa

Noyau paraventriculaire de l'hypothalamus (NPV)

Potentialisatialisation de l'action de la CRH

Contrôle de la sécrétion d'ACTH


- · Le rétrocontrôle négatif du cortisol
 - Action hypophysaire: inhibition de l'expression de POMC
 - Action hypothalamique: inhibition de l'expression de CRH
 - Administration à long terme de corticostéroïdes: atrophie des zones fasciculée et réticulée du cortex surrénalien associée à la suppression de la sécrétion d'ACTH
 - Utilisation des glucocorticoïdes de synthèse (dexaméthasone) dans le cadre des explorations fonctionnelles: pas d'inhibition de la sécrétion de cortisol dans le cas d'un adénome corticosurrénalien

Plan de l'exposé

- I. La cortisolémie
 - 1. Variations interspécifiques
 - 2. Rythmes de sécrétion du cortisol
 - 3. Facteurs de variations
- II. Contrôle de la sécrétion du cortisol
 - 1. Stimulation de la sécrétion par ACTH
 - 2. Contrôle des sécrétions d'ACTH: les facteurs hypothalamiques
 - Le rétrocontrôle négatif du cortisol
- III. Rôles physiologiques du cortisol
 - 1. Réponse intégrée au stress
 - 2. Autres effets

Mécanisme d'action du cortisol

- Action principale sur les récepteurs aux glucocorticoïdes (GR)
- Degré de non spécificité de la liaison des stéroïdes à leurs récepteurs: liaison du cortisol aux récepteurs aux minéralocorticoïdes avec une forte affinité
 - Activité « minéralocorticoïde » du cortisol
 - Expression de la 11β-HSD2 (11β-hydroxysteroid deshydrogenase) dans les reins

Le cortisol exerce un grand nombre d'effets sur différents systèmes et organes

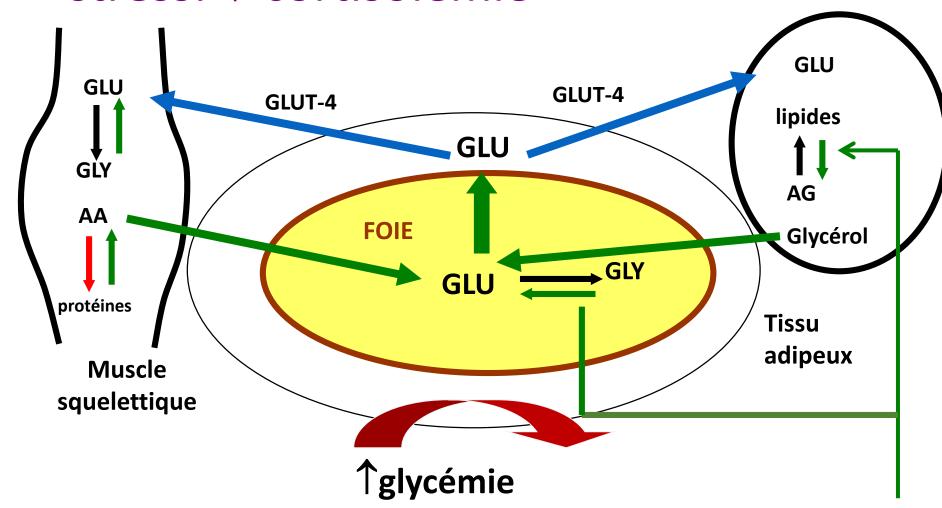
- Réponse intégrée au stress (Selye, 1930)
 - Maintien de la glycémie et de la fonction cardiovasculaire lors d'un jeûne
 - Augmentation de la glycémie au détriment des protéines musculaires lors d'un stress
 - Inhibition réponse immunitaire et réaction inflammatoire
 - Inhibition de la reproduction

Autres effets:

 Peau, tissu osseux, rein, muscles, tractus gastrointestinal, fœtus

Réponse intégrée au stress

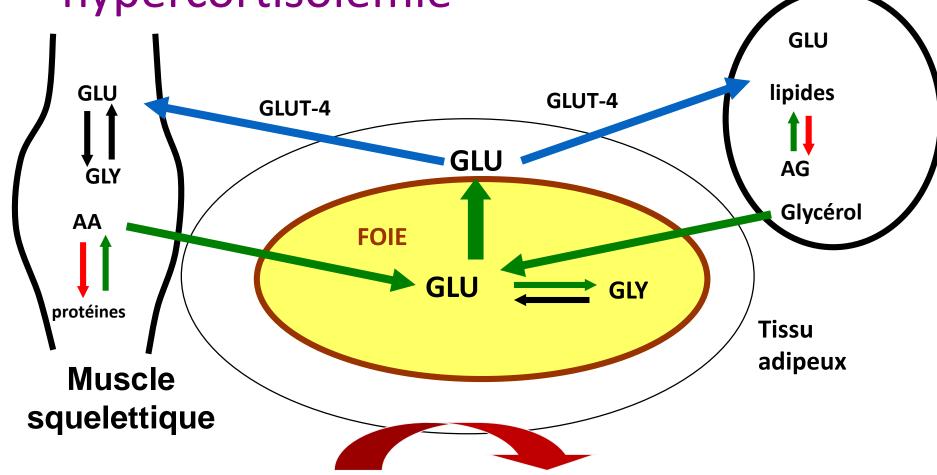
- Exercice, hypoglycémie, hémorragie...
 - Activation système nerveux sympathique, médullo-surrénales: libération d'adrénaline-noradrénaline


Apport d'énergie aux muscles squelettique et cardiaque tout en maintenant une apport suffisant d'oxygène et d'énergie au cerveau

Augmentation de la cortisolémie

Réponse intégrée du système sympatho-surrénalien au

Effets métaboliques en réponse au stress: cortisolémie


Période inter-digestive (faible ratio insuline/glucagon),

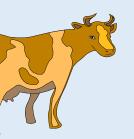
↑ A, NA

Effets métaboliques du cortisol

- Réponse à la demande accrue de glucose en maintenant la glycémie
 - Stimulation de la néoglucogenèse
 - Stimulation de la glycogénolyse
 - Diminution de la capture du glucose par le muscle squelettique
 - Potentialisation des effets de l'adrénaline sur la lipolyse: libération d'acides gras comme source d'énergie
 - Augmentation de la protéolyse et inhibition de la synthèse de protéines: libération d'acides aminés
- Au cours d'un stress, le cortisol agit en synergie avec les catécholamines et le glucagon pour promouvoir la néoglucogenèse, la lipolyse, la glycogénolyse et, en synergie avec les catécholamines, pour promouvoir une réponse cardiovasculaire appropriée

Effets chroniques (pathologie) : hypercortisolémie

†glycémie, hyperinsulinémie

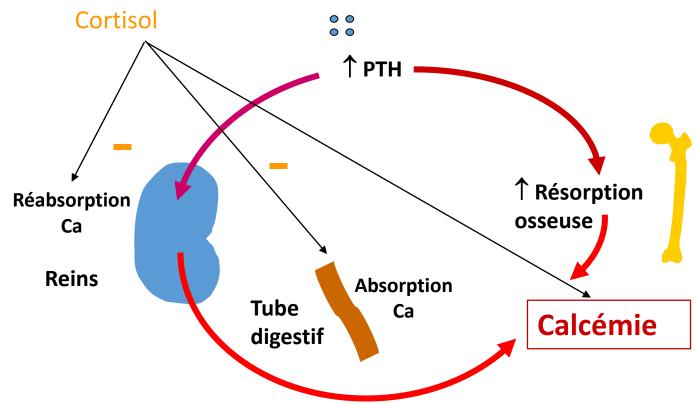

↑ Appétit, ↑ ratio insuline/glucagon), ↓ A, NA Lipogenèse: adiposité viscérale et abdominale

Effets métaboliques: Métabolisme des glucides

- Monogastriques: ↑ néoglucogenèse hépatique
 - ↑ substrats : aa et glycérol
 - 1 activité enzymes néoglucogenèse

- Utilisation glucose (GLUT-4)
 - Inhibition capture et utilisation glucose
 - Application thérapeutique: traitement de l'acétonémie

Effets anti-inflammatoires et immunosuppresseurs


- Inhibition de la phospholipase A2: enzyme clé de la synthèse des médiateurs de l'inflammation (prostaglandines, thromboxanes et leucotriènes)
- Inhibition de la synthèse cytokines pro-inflammatoires
- Stimulation de la synthèse de cytokines antiinflammatoires
- Diminution des lymphocytes T circulants
- Inhibition mécanismes de défense dont l'activation menace l'homéostasie
- Applications thérapeutiques: traitement des maladies chroniques inflammatoires et allergies

Autres effets du cortisol

- Effets positifs sur le système cardiovasculaire
 - Effets permissifs sur l'action des catécholamines
 - Contribution au débit cardiaque et à la pression sanguine
 - Augmentation de la production de globules rouges
- Inhibition fonction de reproduction
- Action sur le tissu conjonctif
 - Inhibition de la prolifération des fibroblastes et de la formation du collagène
 - Peau fine lors d'un excès de cortisol

Action du cortisol sur le tissu osseux

Glandes parathyroïdes

- ↓absorption intestinale et ↓réabsorption rénale Ca
- **↓**Calcémie
- ↑PTH (parathormone)
- ↑ résorption osseuse

Autres effets du cortisol

Action sur les reins

- Inhibition de la sécrétion et de l'action d'ADH
- Activité minéralocorticoïde (rétention de Na+ et d'eau, excrétion de K+ et H+): dépendante de l'activité de la 11β HSD2

Action sur les muscles

- ↑ protéolyse: faiblesse musculaire et douleur si cortisolémie excessive
- Action sur le tractus gastro-intestinal
 - Effet trophique sur muqueuse gastro-intestinale
 - Augmentation de la sécrétion d'acide gastrique: ↑ risque d'ulcères
- Actions psychologiques
 - Maintien d'une fonction psychologique optimale
- Déclenchement de la parturition

Hypercorticisme: syndrome de Cushing

Obésité abdominale Distension de l'abdomen (faiblesse musculaire de la sangle abdominale) Hépatomégalie (surcharge glycogénique) Alopécie, peau fine

Polyphagie, polyurodypsie

Conclusion

Rôle du cortisol

- Maintien homéostasie: nombreux effets biologiques
- Maintien de la glycémie aux dépends des protéines musculaires
- Protection de l'organisme contre une réponse inflammatoire et immune excessive
- Répartition de l'énergie dans les situations de stress en inhibant la fonction reproductive
- Autres effets indépendants des fonctions en lien avec le stress: effets sur les os, la peau, le tissu conjonctif, le système gastro-intestinal, le fœtus.