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Estimation of Variance for Harmonic Mean Half-Lives

To the Editor:

The mean elimination half-life of a drug determined in a
pharmacokinetic study can be presented in two ways. The
common approach is to calculate the arithmetic mean of the
half life (£,,1), determined for each subject under a given set of
conditions. Alternatively, the mean half-life can be estimated
by dividing In 2 by the arithmetic mean elimination rate con-
stant (8) of the drug. The mean half-life computed by this
latter method is equivalent to the harmonic mean of the half-
lives (H.,ﬂ). A harmonic mean half-life can be determined from
the relationship:
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where n is the size of the sample. These two means, the
arithmetic and the harmonic, are not equal, with the arithmetic
mean always being greater than the harmonic mean. However,
the harmonic mean half-life and the half-life obtained from the
arithmetic mean elimination constant are always equal. The
question must be asked, which mean half-life is more accurate
and more precise in representing the mean of the population of
half-life values?

In most pharmacokinetic studies the elimination half-life of
a drug of a subject is calculated using:

In 2
i = —— 2
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where 8 is the elimination rate constant of the drug. This
constant is usually estimated by fitting the log serum concen-
tration-time data in the terminal elimination phase by linear
regression or by applying nonlinear regression to all serum
concentration-time data. Thus, it is the elimination rate con-
stant and not the half-life which is determined experimentally.
Because of this, it is more appropriate that the arithmetic mean
of the §; should be determined first and the mean elimination

half-life computed using eq. 2. The harmonic mean rather than’

the arithmetic mean should, therefore, be employed to represent
the mean of the half-lives in the popuiation under investigation.
However, the disadvantage of using the harmonic mean elimi-
hation half-life is that a measure of the variability (e.g., stan-
dard deviation) of the population half-lives can not be estimated
?J_\’ the conventional method. Conversely, if the arithmetic mean
16 used, the sample SD can be readily calculated using the
telationship:
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where X = = ¥ X, The ease of obtaining a standard deviation

n e
for the mean half-life is a possible reason for the common use
of the arithmetic mean elimination half-life rather than the
&Imonic mean half-life.

he purposes of the present communication are to (a) call
Ailention to a method for the estimation of the standard devia-
tion of the harmonic mean elimination half-life; {b) further
“valuate the appropriatencss of the harmonic mean elimination
ha]f—life; and {¢) determine the accuracy of the jackknife vari-
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ance of the harmonic mean half-life as a measure of variability

of the population.

The jackknife technique is a statistical tool found to be
extremely useful in estimating any desired statistical parame-
ters and their variances."? The principle of this method, when
applied to means, is to determine the arithmetic mean for n —
1 values. This is repeated each time, omitting one value, and

ultimately yielding n means.
Let tijeq, time, o .., and tia. be a random sample of half-

lives of sample size n, The harmonic mean half-life as given by
eq. 1 can be expressed as:
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H,,=n — e 4
A /(51/2.1 Lia tl/}!.n) )

The harmonic mean of n — 1 values, H;, would be given by
the following relationship:
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where {5, is deleted. This is repeated each time, deleting a
different half-life value yielding n values of H,. Based on the
generated values of H,, an approximate {1 — &) 100% confidence
interval for the harmonic mean can be determined and is:
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where:

and fa.y..2 is the critical value obtained from a t table with
n — 1 degrees of freedom and tail area «/2. The {1 — «}100%
confidence interval using the arithmetic mean would be:
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where:
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and SD is the standard deviation. It can be deduced
by comparing eqs. 6 and 8 that the guantity

\/(n -1) ¥ (H -~ f{)"" in eq. 6 plays the same role as the
TR

- standard deviation in eq. 8 which is given by:
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The term \/(n -1 ¥ (H - ﬁ)" 15 in fact the SD of the
e
pseudo-values® {nﬁ,w ~ {n — 1)H.} that are generated by the
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jackknife technique, and therefore, we would prefer to refer to
this term as the “pseudo standard deviation.” The commeon
practice is to report f1,2 = SD. An analogous expression using

the harmonic mean would be:

R, * \/{n -1 ) (A - Ay
im ]

The jackknife technigue can be illustrated using the results
obtained in a recent relative bioavailability study of naproxen
tablets.” The elimination half-lives of naproxen for eight
healthy male volunteers after ingestion of 250-mg naproxen
BP tablets were found to be 18.0, 15.9, 24.8, 19.7, 20.0, 124,
18.5, and 21.2 h. The harmonic mean half-life of naproxen

determined using eq. 4 is given by:

_ 1
o, = 8/(18.0 *
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Eight H; values can then be generated from the naproxen
half-lives using the jackknife technique, (i.e., eq. 5) where:

v 159 248 197 200 124

(an
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159 248 19.7  20.0

1 1
185 " 21.2) = 18.14
g /(L L,
' 180 248 197 200 124
1 1
+ 155 + 21.2) = 18.49

and, subsequently, Hy = 17.45, B, = 17.92, H, = 17.88, He =
19.40, B; = 18.07, and H, = 17.76. The arithmetic mean of the
f,, ie., H, is found to be 18.14. The jackknife variance (V,) of
the harmonic mean half-life can then be determined using the
equation:

Y (H - By
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which yields a value of V;, in the present example, of 2.15. The
pseudo standard deviation of the harmonic mean then equals

8 X 2.15 or 4.15. Therefore, the mean half-life of naproxen
and its pseudo standard deviation are 18.12 x 4.15 h. This
compares with an arithmetic mean half-life and standard de-
viation of 18.81 and 3.67, respectively. The coefficient of vari-
ation of the harmonic mean half-life in this example is 22.9%,
which corresponds to a coefficient of variation of 22.1% for the
average of the elimination rate constants.

In order to evaluate the relative merits of the harmonic mean
compared with the arithmetic mean in estimating the true
mean of the half-lives of a drug in a population, and also the
appropriateness of the jackknife variance for the harmonic
mean, a Monte Carlo study*® was carried cut. The model C =
Cnf—""' was assumed. For each subject the data were simulated
ustng a linear form of the model, i.e.:

lan=C¥+.8,'tj+l:j

where C; is the concentration, « is the intercept, and ¢; is time.
The error term ¢, and the individual elimination rate constant
B were generated randomly. The error term ¢; was assumed to
be normally distributed with the mean equal to zero and an
assigned standard deviation (a,) of 0.05 or 0.1. These standard
deviations were chosen because the error associated with the

(13)
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Table }--Relative Accuracy of the Arithmetic Mean and the
Harmonic Mean in Estimating the Mean Elimination Hal{-life Using
Computer Simulation

Percentage Empirical Bias?®

n Observations*

Arithmetic Mean Harmonic 'Mean

oy = 0.05, CV, = 20%

6 3 4.28 0.24
5 4.84 0.84
10 4.59 0.73
8 3 4.80 0.64
5 4.7% 0.53
10 4.79 0.60
12 3 4.75 0.34
5 4.96 0.52
10 443 0.21

oy = 005. CVQ = 300/0
& 3 13.26 0.82
5 16,12 1.76
10 17.05 1.59
8 3 13.42 1.42
5 9.04 1.21
10 13.60 1.27
12 3 11.54 0.75
5 13.69 1.05
10 14.25 0.60

7y = 0.05, CVp = 40%
& 3 21.40 2.46
5 57.86, 2.94
10 32.52 2.83
8 3 21.69 2.53
5 38.94 2.20
10 9.10 1.79
12 3 15.04 1.35
5 19.04 1.76
10 26.01 1.18

gy = 010. CV;:: = 20%
6 3 5.01 0.56
5 4.54 0.66
i0 4.25 0.51
8 3 5.22 0.60
5 4.80 0.55
10 4.80 0.59
12 3 527 0.48
5 479 0.48
10 4.72 0.39

oy = 010, CVz = 30%
6 3 14.76 0.91
5 17.97 1.77
10 23.18 1.60
8 3 11.8% 0.84
5 10.72 0.81
10 12.88 0.92
12 3 14.25 0.85
5 36.96 0.99
10 14.14 6.87

oy = 0.10. CVz = 40%
6 3 30.69 253
5 31.37 3.10
10 7.4 2.84
8 3 27.24 1.74
5 56.40 1.62

10 25.38 1.77 ,

12 3 8.1 1.61
5 40.80 1.70
10 38.28 1.53

* Number of observations in the terminal phase per subject. ® Percentage en-
pirical bias = [{T 2% — (FadtA ik X 100%), where ([ is the estimated average
half-life from the simulated data, and {2} is the true mean half-life.

analysis of drug in biological fluids is normally <10%, and
generally never exceeds 20%. Variation in analysis was assumed
to be the major source of error. The value of §; was generated



Table H—Empirical Confidence Leveis of the Harmonic Mean with using the model:
the Jackknife Variance and the Arthmetic Mean using the Sample

Variance . Bi= B+ (14)
- Chserva- Arithmetic Mean Harmonic Mean _ . .
a tions*  (Usual Variance) {Jackknife Variance) where § is the true population mean of the half-lives and Y
T oy = 0.05, CV; = 20% accounts for the interindividual variation. The term &; was also
T—a=090 0.95 0.90 0.85 assumed to be normally distributed with the mean of zero and
P 3 0913 0958 0.806 0.957 standard deviation of ¢, The standard deviation, ¢,, and the
5 0909  0.954 0.910 0.959 coefficient of variation, CV,, of §; are related by the following
10 0.911 0.953 0.902 0.949 equation:
8 3. 0.884  0.957 0.895 0.949 q :
5 0.890 0.948 0.905 0.945 -
10 0915 0959 0.908 0.957 o= X CV, {15)
12 3 0.902 0.953 0.509 0.951
5 0.879  0.943 0.891 0.943 To generate §, the value of CV, was fixed at 20, 30, or 40%.
10 0.864 0937 0.688 0.943 These values of CV, provided data with a 2.33-, 4-, or 9-fold
or = 0.05, CV, = 30% range in §; values, respectively. After data were generated for
T—a=090 0.95 0.90 0.95 each subject using eqgs. 13 and 14, least-squares were employed
P 3 0916  0.964 0.907 0.953 to compute the estimated #;. The corresponding half-life was
g 8‘915 0.958 0.916 0.954 then calculated using eq. 2. This procedure was performed for
8 13 0:2;3 g:ggg g:ggg g:ggé 6, 8, and 12 subjects with 3, 5, and 10 concentration time points
5 0.895 0950 0.904 0.944 in the terminal elimination phase per subject. One thousand
‘g gg;g g-ggg gg?g gggﬁ mean half-lives were generated for each of the 54 combinations.
12 5 0869  0.942 0 891 01942 Table I shows the percex}tage empirkfal bias’ for the a_bove 54
10 0866  0.939 0.893 0.942 cases. In every case the bias of the arithmetic mean is much
o1 = 0.05, CV, = 4 larger (6-30 times) than that of the harmonic mean. The bias
1 , GV, (0% 8
1 - a=0.90 0.95 0.90 0.95 of the harmonic mean ranges from 0.2 to 3.1%, which is
6 3 0915 0.951 0530 0045 rf.alatwely insignificant. However, for the ar:fzhn‘xetlc mean, the
5 0933 0978 0.908 0.962 bias ranges from 4.25 to 57.96%. Such .variations cannot be
‘g 0.921  0.963 0.509 0.944 ignored, especially when CV, is large.
8 5 g_'ggg g:gg? g‘ggg g'g:; Two confidence intervals, 90 and 95%, were calculated for
10 0.821 0.966 0.910 0.945 the harmonic mean using the jackknife variance and for the
12 g g-g?g g-gg; g-ggﬁ O-gi’g arithmetic mean using the usual sample variance as demon-
10 0879  0.957 0.896 g_'g“ strated in eqs. 6 and S.I?he results are presented in Table IL
o4 = 0.10, CV, = 20% In most cases, the empirical confidence level of the harmonic
1 . . = ° - .
1 a=090 : 0.95 0.90 0.95 mean is closgr to the true levels, ie., 0.9 or 0.85, than that of
6 s the arithmetic mean.
§ g'g;g ggg: ggg; g'gi; In conclusion, the harmonic mean is significantly better than
10 0.896  0.952 0.895 0.945 the arithmetic mean in representing the true mean of the
8 2 0-337 0.959 0.899 0.952 population, In addition, jackknife variance of the harmonic
10 g"g}g g:ggg gg?g g'ggg mean performs extremely well using the t distribution. There-
12 3 0.870 0951 0.896 0.946 fore, in estimating the mean elimination half-life of a drug in
5 0.864  0.946 0.850 0.954 pharmacokinetic studies, the harmonic mean and pseudo stan-
10 0.873 0938 0.893 0.941 d L - . .
dard deviation are recommended in lieu of the arithmetic mean
= 0.10, OV, = 30% and the usual sample standard deviation.
1-a=090 0.95 0.90 0.85
§ 3 0915  0.962 0.905 0.954 References and Notes
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0-864 0.936 0.638 0.842 5. Metzler, C, M. in “Kinetic Data Analysis™; Endrenyi, L., Ed.;
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