Exercise 9

Building a user model in WinNonlin: construction and validation of a non-linear calibration curve (logistic model) for analytical purposes

Objectives of the exercise

· To study the 4-parameter logistic (4-PL) model for fitting ligand binding assays. 

·  To create a custom model using WinNonlin command language.

· To fit a data set into the User Model.

· To inspect and understand some outputs of WNL such as:

· Eigenvalues, condition number, correlation matrix.

· The plot of the partial derivatives for the optimal design of a calibration curve. 

· To update the 4-PL model to fit data into a 5-PL model

· To see the influence of adding a parameter on the goodness of the fit (Akaike’s Information criterion).

· To understand why adding a parameter to a model can lead to a very poor precision in the estimate of the parameters (the question of Bias versus Variance trade-off); numerical identifiability.

Introduction

Many analytical methods primarily ligand binding (LBA) assays such as immunoassay, generate non-linear standard curves.

The currently accepted reference model for these calibration curves is the 4-parameter logistic (4-PL) model, which optimizes accuracy and precision over the maximum usable calibration range. 

LBAs possess several characteristics that differentiate them from chromatographic assays (Table 1). 
[image: image1.png]The AAPS Journal 2007; 9 (2) Article 29 (http:/wwiw.aapsj.org).

Table 1. Key Differences Between Chromatographic Assays and Ligand Binding Assays Relating to the Calibration Curve

Chromatographic Assays Ligand Binding Assays
Direct concentration-response relationship Direct or inverse concentration-response relationship
High precision Generally lower precision

Extended assay range Limited assay range (frequent need for dilution)

Response generally a linear function of analyte concentration Response generally a nonlinear function of analyte concentration





The key difference between LBAs and chromatographic assays is that for chromatographic assays the mean response is in most cases a linear function of the analyte concentration, while for LBAs this relationship is generally non-linear.

This property means that particular attention must be paid to the selection of an appropriate model for the fitting of the LBA calibration curve data. For LBAs the typical calibration curve is sigmoidal in shape, with a lower boundary (asymptote) near the background response (non-specific binding) and an upper asymptote near the maximum response. The 4-parameter logistic (4-PL) model is generally acknowledged to be the reference model of choice for fitting calibration curves of this shape. 

The equation describing the 4-PL model is as follows:
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Eq.1

In which Y is the response, D is the response at infinite analyte concentration, A is the response at zero analyte concentration, X is the analyte concentration, C is the inflection point on the calibration curve (named IC50 later i.e. the concentration of the standard, predicted to yield 50% activity of the assay) and B is a slope factor that defines the steepness of the curve.

The interpolated concentration (X) for an unknown sample is obtained with the following equation and can be supplemented by its standard error: 
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Figure 1. Typical 4-parameter logistic graph for a competitive-
format immunoassay.





Occasionally, the calibration model needs additional flexibility. In those situations a 5-PL model may work better. This model allows for an asymmetric concentration-response curve by adding an additional parameter, G (named Gamma later). The general equation is as follows:
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Eq.3

This model has several useful characteristics (Figure 1). The response is monotonic, increasing with concentration if A < D and decreasing if A > D (note that the same flexibility can be achieved by allowing B to be either positive or negative, but by convention B is usually assumed to be greater than 0).

For most immunoassays, the four- or five-parameter logistic model is far better than the linear, quadratic or log-log linear models. These former models have recently become available in several software packages but not in WinNonlin; however it is relatively easy to implement a parameter logistic model in WinNonlin. 

In addition to its library of standard PK and PK/PD models, WinNonlin supports two types of custom models: ASCII and compiled user models. Either type can be loaded via WinNonlin’s PK/PD/NCA Analysis Wizard.

We will only develop and run ASCII user models during this workshop.

ASCII user models are written using WinNonlin commands and programming language, and saved as text (*.txt) or model library files (*.lib).

Creating a new ASCII model in WNL

ASCII user models are custom models (with or without differential equations) written in WinNonlin commands.

To show the convenience of a User model in WNL, we will implement the 4-parameter logistic (4-PL) model as a new ASCII model to fit data corresponding to an enzyme immunoassay for the quantitative determination of melatonin sulfate.

This ELISA (enzyme-linked immunosorbent assay) is based on the competition principle. After the substrate reaction, the intensity of the developed color is inversely proportional to the amount of the antigen in the sample. Results of test samples can be determined directly using the standard curve.

The raw data obtained by the analyst are given in Table 2 

Table 2:Raw data to fit to a 4-PL equation
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· Open WNL

· Enter the data for the standard curve. For our example, enter melatonin concentrations into the first column, and the corresponding assay results (mean OD) into the second column. 

· Document header and units

· In a third column enter OD/ODmax using a formula (rather than to copy data) to create this new variable (same formula as for Excel)
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· Save your Workbook using save as a workspace giving it an appropriate name (extension *wsp) 

· To view the shape of the curve, the obtained OD of the standards (y-axis, linear) should be plotted against their concentration (x-axis, logarithmic).

· Plot the raw data using the Chart Wizard button

· The following semi-log plot can easily be obtained
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Visual inspection of the figure indicates that the curve is sigmoidal in shape suggesting that the data should be fitted using a 4-parameter logistic equation of the form given by Equation 1. For that we will create an ad hoc ASCII user model.

ASCII user models can be created in any text editor, including a WinNonlin text window or Notepad. 

· Select User Model in the Model Types dialog and click Next 
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The ASCII Model Selection dialog appears.
To create a User Model, a first option consists of loading and editing an already existing WNL library model as a template; for example if you want to add a baseline to a conventional bicompartmental PK model, it would be much quicker for you to edit the classical bicompartmental model that can be copied from the WNL library rather than to develop a totally new model. Similarly if you have already developed a similar logistic model, you can load and edit this existing User Model.

In our case there is no similar model in the WNL library and we have to Select Create New ASCII Model and click Next.  
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The Model Parameters dialog appears

When creating a totally new model, WNL offer two templates to help you: one for models which include only algebraic equations (as it is the case here) and one for models that include differential equations.

WinNonlin’s Wizard needs to know the number of algebraic and differential equations in the model, and the number and names of estimated and secondary parameters. This information should be entered in the User Model Parameters dialog.

To complete the model parameters settings:

· Enter the model number, an integer between 1 and 32767, to identify the model within a library (here 1). 

· Enter the number of algebraic functions in the model. 

· As the model does not include differential equations, do not check the Include differential equations checkbox.

· Enter the primary parameters (those to be estimated) in the grid. 

· Parameter names can be made of up to 8 alphanumeric characters; I called these 4 parameters:  Top (A), Bottom (D), Slope (B) and EC50 
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· Click Next and Finish

The next window is displayed

WinNonlin has created a new text window containing a template for the model. 
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Within an ASCII model file, each model begins with a MODEL statement identifying the model by number, and ends with an end-of-model (EOM) statement. 

We have now to edit this template to write the algebraic equation corresponding to the 4-parameters logistic model. 

In order to write a more appealing model, I actually used the following parameterization:
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Eq.4

At least, a model requires a MODEL statement, FUNCTION block and EOM statement. The other blocks may appear in any order. Each block must end with an END statement.

To make the model easier to understand for other readers, the User Model can include many remarks, comments and explanations.

Comments can appear within or between any of the blocks. Each individual comment line must begin with REMA (or REMARK)

In a model either REMARK or REMA indicates that the rest of that paragraph contains a note and has to be ignored by WinNonlin.

This is the User model for a 4-parameters logistic model; you can paste the present model directly from Word to WNL.

MODEL 

remark   ******************************************************

remark   Developer:
PL toutain

remark   Model Date:
03-19-2011

remark   Model Version:
1.0

remark   ******************************************************

remark

remark - Commands define model-specific commands ; 

remark -this block contains WNL commands you wish to make a permanent part of the model as the number of functions, 

remark -the number of parameters, the names of parameters etc. 

COMMANDS

NFUNCTIONS 1

NPARAMETERS 4

PNAMES  'Top', 'Bottom', 'Slope', 'EC50'

END
remark Functions define algebraic functions; here we have only one equation associated to our data

FUNCTION 1

toto=(X/EC50)**Slope

tata=1+toto

titi=Top-Bottom

F= Bottom+(titi/tata)

END

remark - EOM indicates the end of the model

EOM

As you can see, the model was split into toto, tata, titi. This approach makes the writing of the model much easier especially when it is complicated. Here the model is rather simple and could have been directly written as a single line.

To run this model later on, you have to save it as an ASCII file (*.lib); do not forget that because the WNL save option Save as a Workspace will not work later on without this specific saving of the model.

The COMMANDS block associates WinNonlin commands with a model, to define model-related values such as NPAR (number of parameters). This block cannot include WinNonlin programming statements. 

The NPARAMETERS command specifies the number of parameters to be estimated 

The PNAMES, and SNAMES, commands name the primary and secondary parameters. These names provide column labels in the output, and may be used in programming statements.

FUNCTION

Each set of equations that will be fited to a body of data requires a FUNCTION block. Most models include only one, like in this case.

Starting modelling
1. Specify the roles of data columns in the model

· Select the X (or independent) variable (here the melatonin concentration) in the Variables list and drag it to the X-Variable field.

· Select the Y variable (or dependent) that here is the optical density (OD) and drag it to the Y-Variable field.

2. Initial Model parameters

· All iterative estimation procedures require initial estimates of the parameters. For some types of models WinNonlin is capable of producing these initial estimates; for others such as for our 4-PL model, initial estimates are required.

·  To set up the initial parameter estimates:

· 1. Select Model>Model Parameters from the menus or click on the Model Parameters tool bar button. The Model Parameter tab of the Model Properties dialog appears.

· 2. Specify the type of Parameter Calculation. The options are: • User Supplied Initial Parameter Values. Enter the initial estimates in the column labeled Initial.
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3. Model options

· Model options should be edited
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· Select uniform weight (W=1 i.e. the same weight for all values)

· Note that assigning equal weight to all the response values is appropriate only if the variability among the replicates is equal across the entire range of the response. For most immunoassays, the variability in the calibration-curve data between replicates increases proportionately with the response mean. Giving equal weight can lead to highly incorrect conclusions about the assay performance and will significantly affect the accuracy of results from the unknown samples. It is therefore extremely important to use a curve-fitting method/software that has appropriate weighting methods/options. We have already addressed the question of data weighting in exercise 3 on the linear calibration curve. 

· PK settings

The PK Settings tab of the Model options dialog (Model>Model Options) provides control over the model fitting algorithm and related settings.

For the minimization Process, select Method 2: Gauss-Newton with Levenberg and Hartley modification
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· Title

Titles can be displayed at the top of each printed page
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To start modeling:

· Select Model>Start Modeling from the menus or click the Start Modeling tool bar button    
[image: image20.png]



WNL provides results output in two forms: in a text format (ASCII) that contains a complete summary of the modelling for this 4-PL example and that can be directly printed (ugly), and in a WNL worksheet that can be printed, saved, exported, etc.

The following worksheet gives the parameter names, final estimates, SE of the estimates, CV%, univariate confidence interval and planar confidence interval.
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The following worksheet can be displayed 
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Chart output

These different outputs will be discussed using the Wordexport document (see later); here we will only discuss Chart output.

This PK analysis produces a chart window with five graphs for each level of the sort variable:

X vs. Observed Y and Predicted Y plots the predicted curves as a function of X, with the Observed Y overlaid on the plot. It is used for assessing the model fit. Here WNL provides a plot with an arithmetic scale by default. 
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Change the X axis scaling to log scale and edit the figure; visual inspection of this semi-log plot indicates an appropriate fitting.
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Observed Y vs. Weighted Predicted Y plots and weighted predicted Y against observed Y. The scatter should lie close to the 45 degree line.
Weighted Predicted Y vs. Weighted Residual Y used to assess whether the error distribution is appropriately modelled throughout the range of the data. We have already discussed more thoroughly this kind of figure in a previous exercise (linear calibration): let us say that here the residuals distribution is appropriate 
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X vs. Weighted Residual Y used to assess whether error distribution is appropriately modelled across the range of the X variable. We have already discussed this kind of figure in a previous exercise (linear calibration): let us say that here the residuals distribution is appropriate (no trends).
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Partial Derivatives 

We will discuss here this last plot because it can be very useful for the optimal design for an assay calibration curve. 

The quality of the calibration depends not only on the model and fitted algorithms used but also on the design (plate layout). The design includes the number and spacing of the calibrator concentrations, as well as the location of the calibrators on the plate. 

For the 4-PL model it is generally recommended that the concentration progression should be logarithmic, typically of the power of 2 or 3.

This plot is a plot of the partial derivative of the model with respect to each parameter as function of the X variable. 

This is a useful measure when plotted against the independent variable (the melatonin concentration): the x axis has been divided into 500 steps (from 1 to 500) corresponding to melatonin concentrations ranging from 1.8179 to 0.1375 meaning that the first part of the curve corresponds to the highest melatonin concentrations.

The partial derivative gives the sampling point where the maximum information about each particular parameter will be obtained; data collected at larger partial derivatives are more influential than those taken at smaller partial derivatives for the parameter of interest. 
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· For Top the maximum information is obtained at the beginning of the curve (when the concentrations are high) meaning that the best points to have information on the Top parameter are at the initial concentrations. 

· The opposite is seen for Bottom; 

· For the slope, the maximum information is obtained at approximately X= 10 and X=140; this is 20 and 80% of the maximum of the curve (1.45 and 0.363) i.e.  the upper and lower bound of the linear portion of the curve (inflection points) 

·  For IC50 the derivative is flat, indicating that all the samples are more or less equally influential. For a typical decreasing response curve (D < A) it was shown that for optimal spacing, the midpoint of the calibrator concentrations should be somewhat greater than the IC50 concentration. 

WinNonlin output

To discuss the WNL output we will first export modelling output to Word.

1. After completing the model setup, click the Start Modelling and Export to the Word tool bar button[image: image28.bmp] .  

2. WinNonlin will launch the analysis, create the selected WinNonlin output and export all the outputs to Word

3. The document can be edited as any Word document

WinNonlin Compartmental Modelling Analysis

4-PL model

Version 5.3 Build 200912111339

User-defined ASCII model:

MODEL

remark   ******************************************************

remark   Developer:
PL toutain

remark   Model Date:
03-19-2011

remark   Model Version:
1.0

remark   ******************************************************

remark

remark - Commands define model-specific commands ; this block contains WNL commands you wish to make permanent part of the model as the number of functions, the number of parameters, the names of parameters etc. 

COMMANDS

 NFUNCTIONS 1

NPARAMETERS 4

PNAMES  'Top', 'Bottom', 'Slope', 'EC50'

END

remark - Temporary define temporary variables; if you need to create variables that will be used in more than one block, those commands go there

TEMPORARY 

END 

remark Functions define algebraic functions; here we have only one equation associated to our data

FUNCTION 1

toto=(X/EC50)**Slope

tata=1+toto

titi=Top-Bottom

F= Bottom+(titi/tata)

 END

remark - EOM indictes end of model

EOM

Settings for analysis:

Input Workbook: C:\Users\pltoutain\Desktop\WinNonlin\Workshop 2011\3 exercise  validation analytical method\Logistic\logistic melatonin_705548.pwo

Input Worksheet: Sheet1

Input Sort Keys: [none]

Gauss-Newton (Levenberg and Hartley) method used

Convergence criteria of 0.0001 used during minimization process

50 maximum iterations allowed during minimization process

This first page is a copy of the input commands created to run the model.

Input data:

	Melatonine (ng/mL)
	Mean_OD ({optical density})
	OD/OD_max_%

	0
	1.805
	100

	1.7
	1.741
	96.45429363

	5.2
	1.536
	85.09695291

	15.6
	1.185
	65.65096953

	46.7
	0.773
	42.82548476

	140
	0.341
	18.89196676

	420
	0.164
	9.085872576


Output data:

Initial Parameters

	Parameter
	Value
	Lower
	Upper

	TOP
	1.8
	0
	18

	BOTTOM
	0.1
	0
	1

	SLOPE
	1
	0
	10

	EC50
	50
	0
	500


Parameter names, initial values, and lower and upper bounds for the parameters to be estimated
Minimization Process

	Iteration
	Weighted_SS
	Top
	Bottom
	Slope
	EC50

	0
	0.153909
	1.8
	0.1
	1
	50

	1
	6.59E-03
	1.817
	3.16E-02
	0.898
	30.86

	2
	2.72E-03
	1.816
	2.79E-02
	0.9699
	30.72

	3
	2.71E-03
	1.818
	2.26E-02
	0.9624
	30.91

	4
	2.71E-03
	1.818
	2.19E-02
	0.9623
	30.92

	5
	2.71E-03
	1.818
	2.19E-02
	0.9622
	30.92


Iteration number, weighted sum of squares, and value for each parameter, for each level of the sort variables

Non-Transposed Final Parameters

	Parameter
	Estimate
	StdError
	CV%
	UnivarCI_ Lower
	UnivarCI_ Upper
	PlanarCI_ Lower
	PlanarCI_ Upper

	TOP
	1.818023
	0.026876
	1.48
	1.732465
	1.903581
	1.654895
	1.981151

	BOTTOM
	0.021889
	0.058082
	265.35
	-0.163013
	0.206791
	-0.330654
	0.374431

	SLOPE
	0.962227
	0.075768
	7.87
	0.721020
	1.203434
	0.502332
	1.422123

	EC50
	30.922451
	3.064152
	9.91
	21.167785
	40.677117
	12.323786
	49.521116


This table of the output lists the Parameter names, (no units here), estimates, standard error of the estimates, CV%, univariate confidence intervals, and planar confidence intervals for each estimated parameter 

The estimated standard errors (and CV%) are valuable for indicating how much information about the parameters is contained in the data. A model can provide a good fit to the data (all deviations between the observed and the predicted values are small) but one or more parameter estimates will have standard errors that are large relative to the estimate. This is the case here for Bottom indicating that the precision of our estimate is very low.

The confidence interval labeled UNIVARIATE is the parameter estimate plus and minus the product of the estimated standard error and the appropriate value of the t-statistic. The confidence interval labeled PLANAR is obtained from the tangent planes to the joint confidence ellipsoid of all the parameter estimates.  The UNIVARIATE confidence intervals ignore the other parameters being estimated, while the PLANAR confidence intervals take into account the correlations among the parameter estimates. 

These confidence intervals (constructed using the linearization method) can be meaningless and it is wise not to put much emphasis on confidence intervals constructed from non-linear models.

Correlation Matrix

	Parameter
	Top
	Bottom
	Slope
	EC50

	TOP
	1
	
	
	

	BOTTOM
	-0.332019
	1
	
	

	SLOPE
	-0.57392
	0.805119
	1
	

	EC50
	-0.127902
	-0.794212
	-0.505536
	1


Correlations among one or more pairs of the estimates indicate that although the data may be well fitted by the model, the estimates may not be very reliable. Also, data sets that result in highly correlated estimates are often difficult to fit, in the sense that the Gauss-Newton algorithm will have trouble finding the minimum residual sum of squares (numerical identifiability with many possible solutions).

Eigenvalues

	Number
	Value

	1
	3.726

	2
	2.006

	3
	0.163

	4
	9.61E-05


The eigenvalues are another indication of how well the data define the parameters. If the parameter estimates are completely uncorrelated, then the eigenvalues will all be equal. A large ratio between the highest and lowest eigenvalues may indicate that there are too many parameters in the model.

Condition Numbers

	Iteration
	Rank
	Condition

	0
	4
	88.990028

	1
	4
	173.067091

	2
	4
	173.723225

	3
	4
	210.102266

	4
	4
	216.084598


Condition number of the matrix of partial derivatives: The condition number is the square root of the ratio of the highest to the lowest eigenvalue of the matrix of partial derivatives. If the condition number gets to be a very high value, then the estimation problem is very ill-conditioned. A high condition number is indicative that a model is sensitive to the data used to fit the model. Small changes in the data may lead to large changes in the parameter estimates.

For individual pharmacokinetic data, there are no hard and fast rules for what constitutes a ‘‘high’’ condition number. Different books report different values depending on how they calculate the condition number. For example, Gabrielsson and Weiner (2000), who calculate the condition number using the square root method in the transformed parameter space, report 10p  i.e. 10000 for our example as a high condition number, where p is the number of estimable model parameters.

Variance-Covariance Matrix

	Parameter
	Top
	Bottom
	Slope
	EC50

	TOP
	7.22E-04
	
	
	

	BOTTOM
	-5.18E-04
	3.37E-03
	
	

	SLOPE
	-1.17E-03
	3.54E-03
	5.74E-03
	

	EC50
	-1.05E-02
	-0.141347
	-0.117368
	9.38903


A variance-covariance matrix for the parameters 

Summary Table

	Melatonine_obs (ng/mL)
	Mean_OD_obs ({optical density})
	Predicted ({optical density})
	Residual ({optical density})
	Weight
	SE_Yhat
	Standard_Res

	0
	1.805
	1.8180
	-0.0130
	1.0000
	0.0269
	-0.9709

	1.7
	1.741
	1.7142
	0.0268
	1.0000
	0.0180
	1.1136

	5.2
	1.536
	1.5442
	-0.0082
	1.0000
	0.0205
	-0.3736

	15.6
	1.185
	1.2053
	-0.0203
	1.0000
	0.0208
	-0.9407

	46.7
	0.773
	0.7441
	0.0289
	1.0000
	0.0232
	1.5164

	140
	0.341
	0.3623
	-0.0213
	1.0000
	0.0200
	-0.9512

	420
	0.164
	0.1569
	0.0071
	1.0000
	0.0277
	0.6140


This table lists the observed data, calculated predicted values of the model function, residuals, weights, the standard deviations (S) of the calculated function values and standardized residuals. Runs of positive or negative deviations indicate non-random deviations from the model and are indicators of an incorrect model and/or choice of weights.

Diagnostics

	Function
	Item
	Value

	1
	CSS
	2.6609

	1
	WCSS
	2.6609

	1
	SSR
	2.71E-03

	1
	WSSR
	2.71E-03

	1
	S
	3.00E-02

	1
	DF
	3

	1
	CORR_(OBS,PRED)
	0.9995

	1
	WT_CORR_(OBS,PRED)
	0.9995

	1
	AIC
	-33.38445

	
	SBC
	-33.60081


This table gives diagnostics for the model and for the total corrected sum of squared observations (CSS), weighted corrected sum of squared observations (WCSS), sum of squared residuals (SSR), weighted sum of squared residuals (WSSR), estimate of residual standard deviation (S) and degrees of freedom (DF), the correlation between observed Y and predicted Y, the weighted correlation, and two measures of goodness of fit: the Akaike’s Information Criterion (AIC) and the Schwarz Bayesian Criterion (SBC).
Unlike the linear model case, the correlation is not a particularly good measure of fit; for most problems it will be greater than 0.9, and anything less than 0.8 probably indicates serious problems with the data and/or model. 

AIC is a measure of goodness of fit based on maximum likelihood. When comparing several models for a given data set, the model associated with the smallest AIC is regarded as giving the best fit. AIC to compare models is appropriate only for comparing models that use the same weighting scheme.

AIC = N log (WRSS) + 2P

For modelling in WinNonlin, N is the number of observations with positive weight. (here N=7) WRSS is the weighted residual sum of squares (WRSS = 2.7 10-3) and AIC = 7*Ln 0.0027 + 8 = -33.38. P is the number of parameters to be estimated (p=4).

Partial Derivatives

	Function
	Time (ng/mL)
	Top
	Bottom
	Slope
	EC50

	1
	0
	1.00000000
	0.00000000
	0.00000000
	0.00000000

	1
	1.7
	0.94220285
	0.05779715
	0.28338677
	0.00304083

	1
	5.2
	0.84754594
	0.15245406
	0.41351430
	0.00721577

	1
	15.6
	0.65889347
	0.34110653
	0.27617796
	0.01255349

	1
	46.7
	0.40210800
	0.59789200
	-0.17801654
	0.01343173

	1
	140
	0.18952231
	0.81047769
	-0.41645415
	0.00858335

	1
	420
	0.07514400
	0.92485600
	-0.32529714
	0.00388393


The value of the partial derivatives for each parameter at each time point 

With the Start Modelling and Export, WNL also exports the generated graphs (not shown here); however they cannot be edited. To export an edited figure, WNL provides the capability to copy a graph and paste it into another Windows application in Windows Metafile (*.wmf) format. 

The Export to Word tool bar button (in File) enables the active object to be exported directly to Microsoft Word, and can be used to export an image of the current chart.
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5 parameters logistic model

Occasionally, this 4-PL logistic calibration model needs additional flexibility. In such situations a 5-PL model may work better. This model allows for an asymmetric concentration-response curve by adding an additional parameter, G. The general equation is as follows:
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The asymmetry parameter allows the function to approach the asymptotes at different rates, effectively “stretching out” either the top or the bottom of the curve, depending on the need (note, in this model G > 0, but to achieve maximum flexibility, B can be positive or negative). Generally we advise that this model should only be used when the asymmetry is clear. In situations where the asymmetry is small, the addition of a fifth parameter can cause the fitting algorithm to become unstable, as illustrated by our example.

Thanks to our User Model, it is very easy to update our initial model by adding this single flexibility Gamma parameter as follows:

MODEL

remark   ******************************************************

remark   Developer:
PL toutain

remark   Model Date:
03-19-2011

remark   Model Version:
1.0

remark   ******************************************************

remark

remark - Commands define model-specific commands ; this block contains WNL commands you wish to make permanent part of the model as the number of functions, the number of parameters, the names of parameters etc. 

COMMANDS

 NFUNCTIONS 1

NPARAMETERS 5

PNAMES  'Top', 'Bottom', 'Slope', 'EC50','Gamma'
END

remark - Temporary define temporary variables; if you need to create variables that will be used in more than one block, those commands go there

TEMPORARY 

END 

remark Functions define algebraic functions; here we have only one equation assocoiated to our data

FUNCTION 1

toto=(X/EC50)**Slope

tata=(1+toto)**Gamma

titi=Top-Bottom

F= Bottom+(titi/tata)

 END

remark - EOM indictes end of model

EOM
We only edited the number of parameters (n=5), with Gamma as a new parameter and tata has been edited accordingly.

Before running this new User Model do not forget to update the initial parameters with a starting Gamma value=1.
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After completing the model setup, click the Start Modelling and Export to the Word tool bar button[image: image32.bmp]
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User-defined ASCII model:

MODEL

remark   ******************************************************

remark   Developer:
PL toutain

remark   Model Date:
03-19-2011

remark   Model Version:
1.0

remark   ******************************************************

remark

remark - Commands define model-specific commands ; this block contains WNL commands you wish to make permanent part of the model as the number of functions, the number of parameters, the names of parameters etc. 

COMMANDS

 NFUNCTIONS 1

NPARAMETERS 5

PNAMES  'Top', 'Bottom', 'Slope', 'EC50','Gamma'

END

remark - Temporary define temporary variables; if you need to create variables that will be used in more than one block, those commands go there

TEMPORARY 

END 

remark Functions define algebraic functions; here we have only one equation assocoiated to our data

FUNCTION 1

toto=(X/EC50)**Slope

tata=(1+toto)**Gamma

titi=Top-Bottom

F= Bottom+(titi/tata)

 END

remark - EOM indictes end of model

EOM

Settings for analysis:

Input Workbook: C:\Users\pltoutain\Desktop\WinNonlin\Workshop 2011\3 exercise validation analytical method\Logistic\logistic melatonin_705548.pwo

Input Worksheet: Sheet1

Input Sort Keys: [none]

Gauss-Newton (Levenberg and Hartley) method used

Convergence criteria of 0.0001 used during minimization process

50 maximum iterations allowed during minimization process

Input data:

	Melatonine (ng/mL)
	Mean_OD ({optical density})
	OD/OD_max_%

	0
	1.805
	100

	1.7
	1.741
	96.45429363

	5.2
	1.536
	85.09695291

	15.6
	1.185
	65.65096953

	46.7
	0.773
	42.82548476

	140
	0.341
	18.89196676

	420
	0.164
	9.085872576


Output data:

Initial Parameters

	Parameter
	Value
	Lower
	Upper

	TOP
	1.8
	0
	18

	BOTTOM
	0.1
	0
	1

	SLOPE
	1
	0
	10

	EC50
	50
	0
	500

	GAMMA
	1
	0
	10


Minimization Process

	Iteration
	Weighted_SS
	Top
	Bottom
	Slope
	EC50
	Gamma

	0
	0.153909
	1.8
	0.1
	1
	50
	1

	1
	1.03E-02
	1.822
	0.126
	0.814
	68.5
	1.779

	2
	6.38E-03
	1.818
	8.53E-02
	0.8861
	39.51
	1.253

	3
	3.67E-03
	1.816
	4.10E-02
	0.9615
	28.43
	0.9578

	4
	2.91E-03
	1.817
	1.68E-02
	0.9808
	27.41
	0.9096

	5
	2.71E-03
	1.817
	1.07E-02
	0.9752
	28.2
	0.9303

	6
	2.70E-03
	1.817
	1.08E-02
	0.9746
	28.39
	0.935

	7
	2.70E-03
	1.817
	1.21E-02
	0.9732
	28.64
	0.9416


Non-Transposed Final Parameters

	Parameter
	Estimate
	StdError
	CV%
	UnivarCI_ Lower
	UnivarCI_ Upper
	PlanarCI_ Lower
	PlanarCI_ Upper

	TOP
	1.817446
	0.035376
	1.95
	1.664352
	1.970539
	1.488087
	2.146804

	BOTTOM
	0.012060
	0.199017
	1650.16
	-0.849203
	0.873324
	-1.840822
	1.864943

	SLOPE
	0.973213
	0.230187
	23.65
	-0.022943
	1.969368
	-1.169872
	3.116297

	EC50
	28.644262
	39.651169
	138.43
	-142.949701
	200.238224
	-340.515109
	397.803633

	GAMMA
	0.941582
	1.032549
	109.66
	-3.526865
	5.410028
	-8.671630
	10.554793


Correlation Matrix

	Parameter
	Top
	Bottom
	Slope
	EC50
	Gamma

	TOP
	1
	
	
	
	

	BOTTOM
	0.227348
	1
	
	
	

	SLOPE
	-0.554588
	-0.724288
	1
	
	

	EC50
	0.354299
	0.90189
	-0.924753
	1
	

	GAMMA
	0.368176
	0.930004
	-0.911196
	0.996257
	1


High correlation between parameters indicates an over-parameterization of the model

Eigenvalues

	Number
	Value

	1
	4.62

	2
	2.33

	3
	0.2225

	4
	7.88E-02

	5
	8.59E-07


The eigenvalues are an indication of how well the data define the parameters. If the parameter estimates are completely uncorrelated, then the eigenvalues will all be equal. A large ratio between the highest and lowest eigenvalues (as here) may indicate that there are too many parameters in the model.

Condition Numbers

	Iteration
	Rank
	Condition

	0
	5
	353.222199

	1
	5
	299.817780

	2
	5
	251.140448

	3
	5
	382.797745

	4
	5
	799.204523

	5
	5
	1157.615378

	6
	5
	1137.124466


If the condition number gets to be very high then the estimation problem is ill-conditioned

Variance-Covariance Matrix

	Parameter
	Top
	Bottom
	Slope
	EC50
	Gamma

	TOP
	1.25E-03
	
	
	
	

	BOTTOM
	1.60E-03
	3.96E-02
	
	
	

	SLOPE
	-4.52E-03
	-3.32E-02
	5.30E-02
	
	

	EC50
	0.496978
	7.11704
	-8.4404
	1572.22
	

	GAMMA
	1.34E-02
	0.191111
	-0.216573
	40.7885
	1.06616


Summary Table

	OD/OD_max_%
	Melatonine_obs (ng/mL)
	Mean_OD_obs ({optical density})
	Predicted ({optical density})
	Residual ({optical density})
	Weight
	SE_Yhat
	Standard_Res

	100
	0
	1.805
	1.8174
	-0.0124
	1.0000
	0.0354
	-1.2413

	96.45429363
	1.7
	1.741
	1.7150
	0.0260
	1.0000
	0.0261
	1.0060

	85.09695291
	5.2
	1.536
	1.5447
	-0.0087
	1.0000
	0.0270
	-0.3470

	65.65096953
	15.6
	1.185
	1.2045
	-0.0195
	1.0000
	0.0295
	-0.8858

	42.82548476
	46.7
	0.773
	0.7439
	0.0291
	1.0000
	0.0288
	1.2745

	18.89196676
	140
	0.341
	0.3636
	-0.0226
	1.0000
	0.0328
	-1.3607

	9.085872576
	420
	0.164
	0.1563
	0.0077
	1.0000
	0.0363
	1.3602


Diagnostics

	Function
	Item
	Value

	1
	CSS
	2.6609

	1
	WCSS
	2.6609

	1
	SSR
	2.70E-03

	1
	WSSR
	2.70E-03

	1
	S
	3.68E-02

	1
	DF
	2

	1
	CORR_(OBS,PRED)
	0.9995

	1
	WT_CORR_(OBS,PRED)
	0.9995

	1
	AIC
	-31.39113

	
	SBC
	-31.66158


The AIC (-31.39) is greater than the one obtained with the 4-PL (-33.38) indicating that there is no justification to add a parameter and that the 4-PL model is the better one.

Partial Derivatives

	Function
	Time (ng/mL)
	Top
	Bottom
	Slope
	EC50
	Gamma

	1
	0
	1.00000000
	0.00000000
	0.00000000
	0.00000000
	0.00000000

	1
	1.7
	0.94325094
	0.05674906
	0.27212232
	0.00327449
	-0.10565981

	1
	5.2
	0.84890086
	0.15109914
	0.39296073
	0.00782260
	-0.26661304

	1
	15.6
	0.66046803
	0.33953197
	0.24307929
	0.01358310
	-0.52519344

	1
	46.7
	0.40535390
	0.59464610
	-0.20771174
	0.01443288
	-0.70151260

	1
	140
	0.19472442
	0.80527558
	-0.43261767
	0.00926602
	-0.61038738

	1
	420
	0.07987484
	0.92012516
	-0.33935622
	0.00429780
	-0.38657084


X vs. Observed Y and Predicted Y
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Comparison between the 4-and 5-PL models

Diagnostic table for the 4-PL model

	Function
	Item
	Value

	1
	CSS
	2.6609

	1
	WCSS
	2.6609

	1
	SSR
	2.71E-03

	1
	WSSR
	2.71E-03

	1
	S
	3.00E-02

	1
	DF
	3

	1
	CORR_(OBS,PRED)
	0.9995

	1
	WT_CORR_(OBS,PRED)
	0.9995

	1
	AIC
	-33.38445

	
	SBC
	-33.60081


Diagnostic table for the 5-PL model

	Function
	Item
	Value

	1
	CSS
	2.6609

	1
	WCSS
	2.6609

	1
	SSR
	2.70E-03

	1
	WSSR
	2.70E-03

	1
	S
	3.68E-02

	1
	DF
	2

	1
	CORR_(OBS,PRED)
	0.9995

	1
	WT_CORR_(OBS,PRED)
	0.9995

	1
	AIC
	-31.39113

	
	SBC
	-31.66158


Inspection of these two tables indicates that adding a supplementary parameter did not improve the fitting (the same CSS) and the AIC associated to the 5-PL model is higher (AIC= -31.39) thus worse than the AIC associated to the 4-PL parameter (AIC= -33.38).

The next table compares the estimated parameters with their SE; it appears that the 5-PL model leads to estimate parameters with very high SE i.e. with a poor estimated precision. For example the CV% of the EC50 was 21.16% for the 4-PL model vs. 138.42% for the 5-PL model.

Parameter estimates: 4-PL model

	Parameter
	Estimate
	StdError
	CV%
	UnivarCI_Lower
	UnivarCI_Upper
	PlanarCI_Lower
	PlanarCI_Upper

	TOP
	1.818023
	0.026876
	1.48
	1.732465
	1.903581
	1.654895
	1.981151

	BOTTOM
	0.021889
	0.058082
	265.35
	-0.163013
	0.206791
	-0.330654
	0.374431

	SLOPE
	0.962227
	0.075768
	7.87
	0.721020
	1.203434
	0.502332
	1.422123

	EC50
	30.922451
	3.064152
	9.91
	21.167785
	40.677117
	12.323786
	49.521116

	
	
	
	
	
	
	
	


Parameter estimates: 5-PL model

	Parameter
	Estimate
	StdError
	CV%
	UnivarCI_ Lower
	UnivarCI_ Upper
	PlanarCI_ Lower
	PlanarCI_ Upper

	TOP
	1.817446
	0.035376
	1.95
	1.664352
	1.970539
	1.488087
	2.146804

	BOTTOM
	0.012060
	0.199017
	1650.16
	-0.849203
	0.873324
	-1.840822
	1.864943

	SLOPE
	0.973213
	0.230187
	23.65
	-0.022943
	1.969368
	-1.169872
	3.116297

	EC50
	28.644262
	39.651169
	138.43
	-142.949701
	200.238224
	-340.515109
	397.803633

	GAMMA
	0.941582
	1.032549
	109.66
	-3.526865
	5.410028
	-8.671630
	10.554793


When the number of parameters in a model increases, the ‘‘closeness’’ of the predicted to observed values increases, but at the expense of estimating the model parameters. In other words, the residual sum of squares decreases whenever more parameters are added into a model, but the ability to precisely estimate those model parameters also decreases. When too many parameters are included in a model the model is said to be ‘‘overfitted’’ or ‘‘overparameterized,’’ whereas when too few parameters are included, the model is said to be ‘‘underfitted.’’. Overfitting produces parameter estimates that have higher variances than the simpler model, both in the parameter estimates and in predicted values. Underfitting results in biased parameter estimates and biased prediction estimates. As model complexity increases, generalizability increases to a point and then begins to decrease. In others words, the ability of the model to predict not just the observed data but other data generated using the same data generating process increases to a maximum and then decreases as the model becomes more and more dependent on the data upon which the model was predicted. 

An appropriate model is one that compromises between a model with biased estimates and one with high variances—the so-called bias-variance trade-off (Bonate, page 21)  
For the present exercise, the 5-PL model is not justified and the 4-PL is the appropriate model for the melatonin data set.
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