Exercise 3

Validation of bioanalytical methods

Objectives of the exercise

· To construct and validate a calibration curve by linear regression with WNL
· To select the appropriate linear response function
· To understand the difference between a linear model and a linear curve
· To check graphically the homogeneity of the variance of the response (homoscedasticity)
· To assess the quality of the fitted function by back calculations (inverse prediction)

· To assess the influence of weighting on the LOQ of an analytical technique

· To show that the coefficient of determination (r²) is not appropriate to assess the quality of fit of a model

The precise and accurate determination of PK and PD parameters depends critically on the reliable measurement of drug and metabolite concentrations (PK) and of all measured endpoints (PD, clinics).

Bioanalytical method validation includes all of the procedures that demonstrate that a particular method used for the quantitative measurement of analytes in a given biological matrix is reliable and reproducible for the intended use. The fundamental parameters for this validation include: (1) accuracy, (2) precision, (3) selectivity, (4) sensitivity, (5) reproducibility, and (6) stability.

It is essential that all assay and measurement methodologies be properly validated prior to the beginning of the experiment or trial, but also during the analysis of the sample or during the collection of PD data.

For an analytical technique, the three main questions to address are: the linearity of the calibration curve, the variability of the predicted concentrations (precision of the analytical technique) and the limit of quantification (LOQ).

Definitions of the main terms used in a validation are given by the VICH for veterinary medicine: see PDF folder 3.

We will address only the quantitative aspects of validation methods i.e. where statistics plays a primary role in the processing of assay results.

Definitions useful for the present exercise

Analyte

Substance to be measured 

Sample matrix 

The environment in which the analyte exists.

Calibration standard

Represents material in an assay to construct the calibration curve
Assay control 

Assay control is the material measured alongside the test sample and that is used to monitor the performance of the system

Accuracy

The accuracy (FDA) of an analytical method describes the closeness of mean test results obtained by the method to the true value (concentration) of the analyte. 

The mean value should be within 15% of the actual value except at the LLOQ (Lower Limit of quantification), where it should not deviate by more than 20%. The deviation of the mean from the true value serves as the measure of accuracy.

Precision 
The precision of an analytical procedure expresses the closeness of agreement (degree of scatter) between a series of measurements obtained from multiple samplings of the same homogeneous sample under the prescribed conditions.

The precision of an analytical procedure is expressed as the coefficient of variation of a series of measurements.

Precision is expressed by the relative standard deviation (RSD) 
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The precision determined at each concentration level should not exceed 15% of the coefficient of variation (CV) except for the LLOQ, where it should not exceed 20% of the CV. 

Limit of quantification (LOQ)

The quantification limit (LOQ) of an individual analytical procedure is the lowest amount of analyte in a sample which can be quantitatively determined with suitable precision and accuracy. 

Several approaches for determining the quantification limit are possible, depending on whether the procedure is instrumental or not. For us, we require a bias (default in accuracy) of lower than 20% for our calibration curve.

Linearity

The linearity of an analytical procedure is its ability (within a given range) to obtain test results which are directly proportional to the concentration (amount) of analyte in the sample.

Overview on the calibration curve

A calibration (standard) curve is the relationship between the response of the instrument and known concentrations of the analyte. A sufficient number of standards should be used to adequately define the relationship between concentration and response. The number of standards used in constructing a calibration curve will be a function of the anticipated range of analytical values and the nature of the analyte/response relationship. A calibration curve should consist of a blank sample (matrix sample processed without internal standard), a zero sample (matrix sample processed with internal standard), and six to eight non-zero samples covering the expected range, including LOQ or LLOQ. As an example, a data set is given in Table 1 (see the Excel sheet entitled “linear calibration curve”).

Data to be analyzed are given in table 1

	Standard (µg/mL)
	Response

	0.1
	0.49

	0.1
	0.67

	0.1
	0.52

	0.25
	1.11

	0.25
	1.01

	0.25
	1.07

	0.5
	2.13

	0.5
	2.13

	0.5
	2.33

	1.25
	7.24

	1.25
	5.82

	1.25
	5.75

	2.5
	14.4

	2.5
	11.8

	2.5
	11.3

	5
	22

	5
	23

	5
	21

	10
	43

	10
	46

	10
	48

	20
	119

	20
	105

	20
	110


We want to build a calibration curve that is 'fit for purpose' i.e. able to  accurately and precisely measure the analyte in new specimens (plasma sample, etc) of unknown concentration

Unweighted linear regression

In WinNonlin

· Open a new Workbook

· Paste your data, edit headers, manage units

· Inspect your data set with the WNL Chart Wizard by creating an X/Y plot

Figure 1: Plot of raw data
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Visual inspection of Fig.1 suggests a linear trend with an obvious upward curvature.

A calibration curve is an empirical relationship that can be described by different equations; the three most frequently used equations are:

	Type
	Equation

	1-Linear (zero intercept)
	
[image: image3.wmf]C

a

sponse

´

=

Re



	2-Linear (non-zero intercept)
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	3-Linear with a quadratic component
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Where b is the intercept (response for C=0), C is the known concentration of the standard and response is the measured analytical response. These three models are linear (in their parameters) even though the plot corresponding to the last equation can be curvilinear (technically a model is said to be linear if the partial derivatives with respect to any of the model parameters are independent from the other parameters).

We will explore these three different equations by fitting our data set first using the second equation.

· Select Tools > PK/PD/NCA Analysis Wizard and click linear.
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· Select Model > data variable and drag Standard and Response  to the X and Y variable respectively

· Select Model > Model options > “Weight” and check in the Model option that Uniform weighting is selected :

· Select the Pre-selected Scheme button.

· Select Uniform Weighting from the pull-down list.
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· In Linear settings, check that the Minimization is by the Gauss-Newton algorithm

· Click the button “Transpose final parameter table” to deselect it

Note: As this option should be used for all analyses, you can save it as a default option. For that, select Tools > options > Models > and click and deselect the box “Transpose final parameters” in the Default parameter options.
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· Click start modelling (and word export if you wish to keep your results) and display the different graphs

Chart output. This PK analysis produces a chart window with five graphs 

Figure 2: X vs. Observed Y and Predicted Y. This plot is the predicted curve (blue line)  as a function of X, with the Observed Y (red dots) overlaid on the plot. It is used for assessing the model fit.
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· Observed Y vs. Predicted Y plots predicted Y against observed Y. Scatter should lie close to the 45 degree line (not shown). 

Figure 3: Predicted Y (X axis)  vs. Residual Y (empty dots) . This plot is used to assess whether the error distribution is appropriately modelled throughout the range of the data. 
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Figure 4: X vs. Residual Y (empty dots) . This plot is used to assess whether the error distribution is appropriately modelled across the range of the X variable. 
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Visual inspection of residuals plot is a critical step to assess the goodness of fit of the model.

A Residual is the vertical distance between an observed concentration and the predicted concentration. If the residual is positive, it means that the point is above the fitted line and if the residual is negative, it means that the point is under the fitted line. The residual is an error that the model cannot explain.

To use adequately linear regression fitting, it is assumed that residuals have a zero mean and a constant variance (homoscedasticity).

The error should be randomly distributed around the mean. A plot of the residuals vs. the independent variable (concentration) is the best option to visually examine residuals. If the residuals do not appear to be randomly scattered around he horizontal line, this suggests that either the model or the weighting scheme (or both) are incorrect.

In Figure 4, the plot of the unweighted residuals vs. concentration shows there is a run (i.e. a sequence of residuals having the same sign) giving the plot a banana-shaped structure. In addition, the dispersion of residuals increasing with the level of concentration indicates heteroscedasticity and that the data should be weighted.

Despite the fact that this fitting is totally unacceptable for an analytical technique, it appears that the coefficient of correlation is r=0.993 (see Table “Diagnostics” in Linear workbook) and the coefficient of determination R2=0.986 show that this metric is not appropriate to discuss linearity of a calibration curve (for details, see the attached PDF: JM Sonnergaard, On the misinterpretation of the correlation coefficient in pharmaceutical  sciences. Int. J. Pharmacol. (2006) 321: 12-17.

Weighted linear regression 
First we will explore 1/X as a weighting factor; for that we have to compute 1/X (and 1/X2) in the spreadsheet. 

· Close your current model. Proceed as for the first fitting but now tell WNL that the weighting vector is 1/X by selecting 1/X in the checkbox entitled ‘Weight on file in Column’
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Let us examine the different graphs corresponding to this new analysis.

Figure 5: X vs. observed Y (emty dots)  and predicted Y (blue line). Here with a weighting factor of 1/X

[image: image14.png]response

120

100

80

40

20

o]
o]
o]
10 12 14 16 18 20

Standard (ug/mL)

~©- Obsened
— Predicted




Figure 6: plot of residuals (empty dots) for a weighting factor of 1/X
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The plot of residuals (Fig.6) is improved but not yet acceptable; thus we immediately test 1/X2 as a weighting factor (i.e. edit the checkbox for Weight on file in Column).

The new residual plot (Fig.7) now looks much better in terms of homoscedasticity i.e. the variance seems similar for the different concentration levels. Nevertheless, the residuals do not display a random pattern with again a banana-shaped pattern indicating that there were some problems with the structural model: the straight line is not appropriate.

Figure 7: Plot of residuals (empty dots)  for a weighting factor of 1/X².
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At this point, it is interesting to assess the relative merit of these 3 modelling approaches in terms of prediction using back calculation i.e. by assessing the relative error (departure) of the model-predicted data to nominal or theoretical values.

To do this, we have to compute the Relative Error (RE%) of the predicted concentration.

RE% is the key metric to assess the agreement of calibrator nominal concentrations with back-fitted concentrations read off the fitted calibration curve as if they were unknown samples. 

These predicted calibrator concentrations can then be expressed as a percent recovery at each concentration level 100(BC/NC), or alternatively as their associated percent relative error, %RE = 100(BC – NC)/NC, where BC and NC represent the back-calculated and nominal concentrations, respectively.

From the mean response of the observed responses at each concentration level and using the equations of the fitted calibration curves, determine in Excel the back-calculated concentrations and the corresponding RE%.

Table 2: Back-calculated concentrations and quality of the predictions (RE%) for the different concurrent models to fit the data from Table 1

	Weight
	INT
	
	1
	-1.760
	1/X
	-0.121
	1/X^2
	0.052
	A0
	1/X^2
	0.103

	
	SLOPE
	
	
	5.446
	
	5.115
	
	4.734
	A1
	
	4.366

	
	
	
	
	
	
	
	
	
	A2
	
	0.052

	Conc.
	Response
	Conc.
	
	Conc.
	
	Conc.
	
	
	Conc.
	

	
	Indiv
	Mean
	Back_calc
	RE%
	Back_calc
	RE%
	Back_calc
	RE%
	
	Back_calc
	RE%

	
	
	
	
	
	
	
	
	
	
	
	

	0.1
	0.49
	
	
	 
	
	 
	
	 
	
	
	 

	0.1
	0.67
	0.56
	0.426
	326
	0.133
	33.2
	0.107
	7.20
	
	0.105
	4.65

	0.1
	0.52
	
	
	 
	
	 
	
	 
	
	
	 

	0.25
	1.11
	
	
	 
	
	 
	
	 
	
	
	 

	0.25
	1.01
	1.06
	0.518
	107
	0.232
	-7.38
	0.214
	-14.6
	
	0.220
	-12.2

	0.25
	1.07
	
	
	 
	
	 
	
	 
	
	
	 

	0.5
	2.13
	
	
	 
	
	 
	
	 
	
	
	 

	0.5
	2.13
	2.20
	0.726
	45.3
	0.453
	-9.38
	0.453
	-9.42
	
	0.477
	-4.61

	0.5
	2.33
	
	
	 
	
	 
	
	 
	
	
	 

	1.25
	7.24
	
	
	 
	
	 
	
	 
	
	
	 

	1.25
	5.82
	6.27
	1.474
	17.9
	1.249
	-0.04
	1.313
	5.06
	
	1.390
	11.2

	1.25
	5.75
	
	
	 
	
	 
	
	 
	
	
	 

	2.5
	14.4
	
	
	 
	
	 
	
	 
	
	
	 

	2.5
	11.8
	12.50
	2.618
	4.73
	2.467
	-1.30
	2.629
	5.17
	
	2.749
	9.97

	2.5
	11.3
	
	
	 
	
	 
	
	 
	
	
	 

	5
	22
	
	
	 
	
	 
	
	 
	
	
	 

	5
	23
	22.00
	4.363
	-12.7
	4.325
	-13.5
	4.636
	-7.29
	
	4.746
	-5.08

	5
	21
	
	
	 
	
	 
	
	 
	
	
	 

	10
	43
	
	
	 
	
	 
	
	 
	
	
	 

	10
	46
	45.67
	8.708
	-12.9
	8.951
	-10.5
	9.635
	-3.65
	
	9.382
	-6.18

	10
	48
	
	
	 
	
	 
	
	 
	
	
	 

	20
	119
	
	
	 
	
	 
	
	 
	
	
	 

	20
	105
	111.33
	20.766
	3.83
	21.789
	8.95
	23.505
	17.5
	
	20.461
	2.31

	20
	110
	
	
	 
	
	 
	
	 
	
	
	 


Back calculation: uniform weighting, w=1

Inspection of the predicted values shows that modelling without weighting leads to an unacceptable bias (RE%) for low concentrations (red) but good predictions for high concentration values (green). Such a calibration curve could not be used to measure concentrations lower than 2.5 µg/mL!

Back calculation: w=1/X

Inspection of the predicted concentrations shows that modelling with a 1/X weighting leads to large bias (RE%) for the lowest concentration (bias of 33%) but good predictions for the other concentration values (bias from 0 to 14%). Such a calibration curve could not be used to measure concentrations lower than 0.25µg/mL that is much better than the curve obtained without weighting.

Back calculation: w=1/X²

Inspection of the predicted concentrations shows that modelling with a 1/X2 weighting leads to good predictions except for the highest concentration (bias of 18%). Such a calibration curve could not be used to measure high concentrations with the regulatory acceptance limits (bias of less than 15%).

Finally none of the fitted curves comply with regulatory requirements but it is clear that using a weighting factor largely improves the predictions of the calibration curve especially for low concentrations. A first option to solve the problem is to keep the 1/X² weighting and to narrow the range of the calibration curve (by deleting the nominal concentration of 20 µg/mL). The results are now acceptable in terms of the residual plot (Fig.8).

Figure 8: Plot of residuals for an abbreviated curve (from 0.1 to 10µg/mL) with w=1/X²
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This calibration curve is acceptable but requires a dilution of the samples for the highest concentrations. 

Another option is to change the model and to fit the data with a polynomial including a quadratic component.

· Select this new model in WNL and perform the fitting keeping the weighting at 1/X²
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Figure 9: The X vs. Observed Y and Predicted Y. This plot, using a quadratic component, suggests a good fit with an upward curvature.
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Figure 10: Plot of residuals for the calibration curve fitted with a quadratic component and w=1/X². The residual plot looks good.
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Inspecting the last column of Table 2 shows that all the RE% are acceptable and this calibration curve can be used for samples having concentrations from 0.1 to 20 µg/L.

The final model is as follows:

WinNonlin Compartmental Modelling Analysis

Version 5.3 Build 200912111339

WinNonlin compiled model:

Quadratic
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Equation of the calibration curve

 f=A0+A1*C+A2*C^2

Settings for analysis:

Input Workbook: C:\Users\pltoutain\Desktop\WinNonlin\Workshop 2011\3 exercise  validation analytical method\calibration curve linear calibration\linear curve no weighing_705548.pwo

Input Worksheet: Sheet1

Input Sort Keys: [none]

Gauss-Newton method used

Convergence criteria of 0.0001 used during minimization process

50 maximum iterations allowed during minimization process

Input data:

	Standard (ug/mL)
	response
	1/X
	1/X*X

	0.1
	0.49
	10
	100

	0.1
	0.67
	10
	100

	0.1
	0.52
	10
	100

	0.25
	1.11
	4
	16

	0.25
	1.01
	4
	16

	0.25
	1.07
	4
	16

	0.5
	2.13
	2
	4

	0.5
	2.13
	2
	4

	0.5
	2.33
	2
	4

	1.25
	7.24
	0.8
	0.64

	1.25
	5.82
	0.8
	0.64

	1.25
	5.75
	0.8
	0.64

	2.5
	14.4
	0.4
	0.16

	2.5
	11.8
	0.4
	0.16

	2.5
	11.3
	0.4
	0.16

	5
	22
	0.2
	0.04

	5
	23
	0.2
	0.04

	5
	21
	0.2
	0.04

	10
	43
	0.1
	0.01

	10
	46
	0.1
	0.01

	10
	48
	0.1
	0.01

	20
	119
	0.05
	0.0025

	20
	105
	0.05
	0.0025

	20
	110
	0.05
	0.0025


Output data:

Table 3: Final Parameters and Linearity of the calibration curve.

	Parameter
	Units
	Estimate
	StdError
	CV%
	UnivarCI_Lower
	UnivarCI_Upper

	A0
	
	0.102558
	0.042845
	41.78
	0.013458
	0.191659

	A1
	
	4.365514
	0.209314
	4.79
	3.930224
	4.800803

	A2
	
	0.052323
	0.021176
	40.47
	0.008285
	0.096361


A=A2, b=A1, C=A0

It is usual to test linearity by a test of lack-of-fit (not by considering a R2); this option does not exist in WNL and is tedious to compute by hand. 

The linearity of an analytical method is its ability to elicit test results that are proportional to the concentration of analytes in samples within a given range.

Here we can discuss linearity considering the significance or not of the quadratic component (A2); as its confidence interval (0.0082; 0.096) totally excludes 0, it can be accepted that the quadratic component is significant for p<0.05, meaning that linearity does not hold for a simple line without a quadratic component.

With WNL, it could be possible to fit the data set with a cubic component and if the cubic component is not significant, we can accept the linearity of the present equation. 

An ideal fitting applied to the results should have an intercept not significantly different from zero, but that is not the case here (confidence interval of A0 excluding the 0 value). However, it is usual to keep this intercept because it improves the predictability of the curve.

Inspection of back-calculated concentrations with the quadratic model (1/X2 weighting) shows good predictions for the total range of nominal concentrations. Such a calibration curve complies with the regulatory acceptance limits (bias of less than 15%) and therefore can be used to measure concentrations within this range.

Back calculated concentrations are obtained by solving equation: 
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 with a, b, and c as given in Table 3 (see Excel sheet entitled “square roots indiv”). 

For example, 0.56 was the mean observed response for the 0.1 ng/mL nominal concentration (see Table 2).

The solved equation was:

0.56 = 0.102558 + 4.365514X + 0.05223X²

The discriminate (b²-4ac) was equal to 4.3764 and the positive root was 0.1046. 

Another possibility is to use the Excel solver.

Summary Table

	1/X
	Standard_obs (ug/mL)
	response_obs
	Predicted
	Residual
	1/X*X
	SE_Yhat
	Standard_Res

	10
	0.1
	0.49
	0.5396
	-0.0496
	6.6196
	0.0323
	-0.9980

	10
	0.1
	0.67
	0.5396
	0.1304
	6.6196
	0.0323
	2.6213

	10
	0.1
	0.52
	0.5396
	-0.0196
	6.6196
	0.0323
	-0.3948

	4
	0.25
	1.11
	1.1972
	-0.0872
	1.0591
	0.0381
	-0.6085

	4
	0.25
	1.01
	1.1972
	-0.1872
	1.0591
	0.0381
	-1.3062

	4
	0.25
	1.07
	1.1972
	-0.1272
	1.0591
	0.0381
	-0.8876

	2
	0.5
	2.13
	2.2984
	-0.1684
	0.2648
	0.0780
	-0.5885

	2
	0.5
	2.13
	2.2984
	-0.1684
	0.2648
	0.0780
	-0.5885

	2
	0.5
	2.33
	2.2984
	0.0316
	0.2648
	0.0780
	0.1104

	0.8
	1.25
	7.24
	5.6412
	1.5988
	0.0424
	0.2121
	2.2502

	0.8
	1.25
	5.82
	5.6412
	0.1788
	0.0424
	0.2121
	0.2516

	0.8
	1.25
	5.75
	5.6412
	0.1088
	0.0424
	0.2121
	0.1531

	0.4
	2.5
	14.4
	11.3434
	3.0566
	0.0106
	0.4111
	2.1451

	0.4
	2.5
	11.8
	11.3434
	0.4566
	0.0106
	0.4111
	0.3205

	0.4
	2.5
	11.3
	11.3434
	-0.0434
	0.0106
	0.4111
	-0.0304

	0.2
	5
	22
	23.2382
	-1.2382
	0.0026
	0.7395
	-0.4311

	0.2
	5
	23
	23.2382
	-0.2382
	0.0026
	0.7395
	-0.0829

	0.2
	5
	21
	23.2382
	-2.2382
	0.0026
	0.7395
	-0.7792

	0.1
	10
	43
	48.9900
	-5.9900
	0.0007
	1.5832
	-1.0478

	0.1
	10
	46
	48.9900
	-2.9900
	0.0007
	1.5832
	-0.5230

	0.1
	10
	48
	48.9900
	-0.9900
	0.0007
	1.5832
	-0.1732

	0.05
	20
	119
	108.3420
	10.6580
	0.0002
	6.2276
	1.0554

	0.05
	20
	105
	108.3420
	-3.3420
	0.0002
	6.2276
	-0.3309

	0.05
	20
	110
	108.3420
	1.6580
	0.0002
	6.2276
	0.1642


Conclusion 
Good models, i.e. design and fitting models, do not by themselves guarantee the quality of the calibration curve. Its suitability needs to be assessed. The fit of the selected model to the experimental data should be evaluated primarily by assessing the %RE of the model-predicted data to nominal or theoretical values. 

The back-calculated concentrations should also be examined for lack of fit patterns, as poorly fitting models will exhibit a systematic pattern in the %RE with concentration. 

Preference must be given to a model presenting good predictions rather than good quality of fit, even if some statistical hypotheses have to be infringed.
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