Exercise 14

Dose titration and selection of a therapeutic dose

 for a new quinolone in pigs

Objectives of the exercise

· To understand the limitations of the classical dose titration method to select a dose  
· To understand how to determine a dose for an antibiotic using PK/PD  concepts
· To analyze qualitative clinical results using a logistic model to compute a probability of cure (POC)
· From a dose titration trial, to be able to establish a breakpoint value for the selected PK/PD index that guarantees a POC of 90% in pigs.
· To understand the concept of Target Attainment Rate ( TAR)

· To  select a dosage regimen to achieve a TAR of 90% for the  established PK/PD index value in the pig population

· To perform a sensitivity analysis to identify the most critical factors of variability (PK or PD) influencing the TAR.

Designs for dose titration and the determination of an effective dose

The simple parallel design is generally selected for a dose titration for antibiotics. In this case the animals (spontaneously or experimentally infected) are randomly allocated into a few predetermined dose groups (placebo, low dose, medium dose, and high dose i.e. 4 dose levels) and the endpoints of interest (cure rate) are compared using some appropriate statistical test of the hypothesis (Fig.1). The parallel design has the advantage of being straightforward in design and analysis but has several serious limitations. The dose that is selected as the most effective dose is unlikely to be the optimal dose because the selected dose is obligatorily one of the doses tested and is highly dependent on the power of the design (number of animals tested).

Figure 1: Classical dose titration and selection of a dose
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An alternative to the classical dose titration for the selection of a rational dosage regimen for an antibiotic is the so-called PK/PD approach. Here the goal is to determine a dose that optimizes, in a target population, the numerical value of the PK/PD index that has been shown to predict drug efficacy.

Three PK/PD indices are used to predict clinical and bacteriological outcomes. For quinolones, AUC/MIC is the appropriate index and, the numerical threshold value (or breakpoint value) predictive of good clinical efficacy is typically 125h; it means that the goal is to find a dose achieving an average plasma concentration over 24h, that is 5 times higher than the targeted MIC (for explanation on the fact that to achieve 125h is equivalent to achieve 5 times the MIC, see Toutain et al. AUC/MIC: a PK/PD index for antibiotics with a time dimension or simply a dimensionless scoring factor? Journal of Antimicrobial Chemotherapy (2007) 60, 1185–1188).
As we are developing a new antibiotic for metaphylaxis (control) in pigs, our first task will be to establish experimentally the breakpoint value of AUC/MIC that is predictive of a probability of cure rate (POC) of 90% in pigs. 

Step 1:  Establishing the breakpoint value of AUC/MIC for the new antibiotic that is predictive of a probability of cure rate (POC) of 90% in pigs

.

This first step involves a parallel design identical to the one used for a classical dose-titration (4 dose levels) but in addition to observing clinical efficacy (cure or not cure) vs. dose, blood samples are collected and rather than selecting directly the dose for a confirmatory clinical trial, we will attempt to correlate the observed efficacy (POC) with the extent of the internal exposure to the drug. 

For an antibiotic, the effective AUC depends on the MIC of the pathogen used in the trial. Thus we will use the measured AUCs scaled by the MIC of the pathogen actually used for the infectious challenge, as a generic explicative variable, and the POC as the dependent variable. 

The individual observed AUC/MIC values are provided in Table 1.

Table 1: Individual results obtained in 40 pigs during a dose-titration trial. Four groups of 10 animals were tested under metaphylactic conditions. Blood samples and individual AUC/MIC were obtained for the non placebo groups (a single daily dose of 1, 2 or 4 mg/kg). The observed responses were either cure (Yes) or no cure (No).

	Dose levels (mg/kg)
	Animal
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	Prob of cure

	0
	Cure
	Yes
	Yes
	No
	No
	Yes
	No
	No
	Yes
	No
	No
	0.4

	
	AUC/MIC
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	

	1
	Cure
	Yes
	No
	Yes
	Yes
	No
	Yes
	Yes
	No
	No
	Yes
	0.6

	
	AUC/MIC
	72
	41
	65
	70
	63
	72
	62
	54
	52
	54
	

	2
	Cure
	Yes
	Yes
	Yes
	Yes
	Yes
	No
	Yes
	Yes
	Yes
	Yes
	0.9

	
	AUC/MIC
	96
	103
	85
	93
	87
	55
	96
	89
	72
	72
	

	4
	Cure
	Yes
	No
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	0.9

	
	AUC/MIC
	124
	60
	89
	120
	89
	129
	116
	130
	111
	101
	


Logistic regression
When an all-or-none effect is observed due to the selected binary endpoint (cured or not cured for antibiotics), the concentration-response curve is described by a quantal dose-response curve as depicted in the next figure (Fig:2). 

Figure 2: S-shaped curve for a logistic model
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This logistic model represents the probability at which a concentration (or AUC/MIC) of a drug produces the all-or-none effect. Despite the fact that the graph of an S-shaped model looks like the one of an Emax model, a quantal dose-response curve differs from the Emax model because it does not relate dose to intensity of effect but to the probability of an effect. 

For endpoints having exactly two possible outcomes, a quantal or a Percent-Concentration Relationship can be used. The link between the measure of a drug concentration and the corresponding probability is given by a logistic equation of the form (Eq.1): 
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Eq.1

where P is the binary or dichotomous outcome probability from 0 to 1, Logit (L) is the natural log of the odds (relative risk): 
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Eq.2

The Logit can be written as a linear equation of the form (Eq.3): 
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Eq.3

Eq.3 allows the development of linear models describing the relationship between the success probability and various predictors. The Logit bearing linearity in its parameters (θi) and ranging from -
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 , it transforms the 0 to 1 probability to a continuous scale (Gabrielsson and Weiner 2006). 

For example the probability of cure (POC) for our quinolone can be modelled using Eq.4: 
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Eq. 4

where POC is the probability of cure (from 0 to 1), θ1 is a parameter for baseline (here a placebo effect) and θ2 is an index of sensitivity (a slope). X is the independent variable and is the AUC/MIC ratio that was selected to predict efficacy (or any other quantitative index predicting drug efficacy). If θ2 equals 0, the response is independent from X and the POC corresponds to the placebo effect. In Equation 4, Exp(θ2) represents the change in the odds of the outcome (multiplicatively) by increasing X by 1 unit holding all other predictors constant. In this relationship, the equivalent of the EC50 (or ED50) is named EL50; it is now the median effective level of the independent variable (e.g. dose, AUC/MIC) for which the response (curve) is observed in 50% of the subjects, and the slope of the curve now represents the dispersion (variance) of the threshold in a population. The EL50 can be estimated by the ratio –θ1/θ2, the X value associated with the steepest slope of the S-shaped logistic regression curve. When Eq.4 is plotted against a range of X values, this model has an S-shaped curve, approaching values of 0 and 1 gradually as shown in Figure 2. 

This kind of model can be extended to include qualitative indicators (e.g. gender, breed, etc). 

For the data of Table 1, a logistic regression with AUC/MIC as the continuous independent (or explicative) variable and the POC as the categorical dependent (explained) variable (i.e. cure or failure), has to be performed using Eq. 5:
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Eq. 5

As explained above, Eq.5 has two parameters, a and b. In this equation “a” expresses the placebo effect, i.e. the probability of obtaining a cure in the control pigs and “b” is the slope representing the sensitivity of the cure rate to the increase of the AUC/MIC ratio. With this model, the probability of spontaneous cure (placebo effect) is given by 1/(1+ea), the 50% POC is given by an AUC/MIC ratio equal to a/b and the 90% POC by an AUC/MIC ratio equal to (a+2.1972)/b. 

Using the data given in Table 1, you have to determine a and b in order to estimate the (AUC/MIC)target necessary to achieve a POC higher than 90%.

· Open WNL

· Enter data (replacing Yes or No by 0 or 1)

	pig
	AUC/MIC
	cure/no cure
	code

	1
	0
	yes
	1

	2
	0
	yes
	1

	3
	0
	no
	0

	4
	0
	no
	0

	5
	0
	yes
	1

	6
	0
	no
	0

	7
	0
	no
	0

	8
	0
	yes
	1

	9
	0
	no
	0

	10
	0
	no
	0

	11
	72
	yes
	1

	12
	41
	no
	0

	13
	65
	yes
	1

	14
	70
	yes
	1

	15
	63
	no
	0

	16
	72
	yes
	1

	17
	62
	yes
	1

	18
	54
	no
	0

	19
	52
	no
	0

	20
	54
	yes
	1

	21
	96
	yes
	1

	22
	103
	yes
	1

	23
	85
	yes
	1

	24
	93
	yes
	1

	25
	87
	yes
	1

	26
	88
	no
	0

	27
	96
	yes
	1

	28
	89
	yes
	1

	29
	72
	yes
	1

	30
	72
	yes
	1

	31
	124
	yes
	1

	32
	60
	no
	0

	33
	89
	yes
	1

	34
	120
	yes
	1

	35
	89
	yes
	1

	36
	129
	yes
	1

	37
	116
	yes
	1

	38
	130
	yes
	1

	39
	111
	yes
	1

	40
	101
	yes
	1


Build a user model of the logistic model given in Eq.5

MODEL 

remark   ******************************************************

remark   Developer:
PL Toutain

remark   Model Date:
04-01-2011

remark   Model Version:
1.0

remark   ******************************************************

remark

remark - define model-specific commands 

COMMANDS 

NFUNCTIONS 1

NPARAMETERS 2

PNAMES  'a', 'b'

NSECONDARY 3

SNAMES  'Placebo', 'BP50', 'BP90'

END

remark - define temporary variables

TEMPORARY 

END 

remark - define algebraic functions

FUNCTION 1

F= 1/(1+exp(a-b*x))

END

remark - define any secondary parameters

SECONDARY 

Placebo=1/(1+exp(a))

BP50=a/b

BP90=(a+2.1972)/b

END 

remark - end of model

EOM 

· Run the model

· The following curve can be obtained 

Figure 3: S-shaped logistic curve

[image: image11.png][ PK Chart - [Untitled7] Derived)

109 o 00 @ apmOO W O 000 @
09
08

07

~C- Observed
—— Predicted

Probabilty_of_response
o
&

03

02

01

0 20 40 60 80 100 120 140
AuCMIC

Kvs. Observed ¥ and Predicied Y /Obseived vs Weighied Predicled ./ Weighied Predicled vs Weighted esidul ./ vs. Weighied Residualt/ Pait | 3 o1 | - | - ||





The final parameters are:
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The secondary parameters are: 
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The placebo effect was estimated at 30% and the POC90% (our breakpoint value) at 109.77 rounded to 110h.

To conclude this first step, it should be realized that using the same initial small pilot clinical trial, the dose selection can be estimated by two different approaches: a conventional dose titration approach versus a PK/PD approach. For the PK/PD approach, it should be stressed that what is determined at this step is not a dose for pivotal clinical trials but a target value for a PK/PD surrogate that can be used for predicting clinical efficacy.

The next step for the conventional dose-titration is to carry out a confirmatory clinical trial while the second step for the PK/PD approach is to determine a dose that guarantees a TAR of 90% in pig population for our breakpoint (110h). 
Step 2: Determination of a dose to achieve a Target Attainment Rate of 90% for the breakpoint value of the PK/PD index

The selection of a final dosage regimen intended for use across a population of animals needs to account for inter-animal variability. We expect to find a dosage regimen able to achieve a TAR of 90% for the breakpoint value of the PK/PD index as determined in the preceding step (110h) i.e. to find the dose for which the breakpoint value of the PK/PD index is actually achieved in at least 90% of the pigs in a given population. For that we have to take into account the different factors of variability able to influence the final dose. The dose is given by the following relationship: 
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Eq.6

where:

Dose(per day) = the daily maintenance dose at steady state;

CL = the plasma clearance (in mL/hour). It is because the AUC/MIC target is expressed in hours per 24h that the clearance should be expressed per hour and not per day to compute a daily dose with this equation (see attached reprint by Toutain et al. explaining why).

(AUC/MIC)target = the AUC/MIC breakpoint value to achieve (110 h in our example)

MIC= a given MIC as MIC90 or any other MIC.

fu =  is the free fraction = the fraction of unbound drug in the plasma or serum (where values range from 0 to 1). For the sake of simplicity fu has been set to a constant value of 1 in this tutorial.

F = the absolute bioavailability (where values range from 0 to 1).

Two possible approaches can be used to compute the dose from Equation 6: using point estimates or Monte Carlo Simulations (MCS). 

The simplistic approach to compute the dose is to solve Equation 6 upon selected point estimates (generally the mean) of CL and F and the MIC that you target (MIC50 or MIC90). This is a so-called deterministic modelling approach, which is easy to perform but which provides only a single dose estimate.  Such an approach ignores biological variability and provides no information on the range of dose values likely to be required in a patient population.  

The second approach consists of using MCS to incorporate the variability in antimicrobial drug exposure (AUC) and the variability in pathogen susceptibility according to the respective distributions (Fig.4). With MCS, a large hypothetical population of dose may be generated allowing the determination of the dose for which the probability of achieving the PK/PD target of 110h is achieved in 90% of pigs. This has led to the concept known as the “Probability of Target Attainment” (PTA). 

Figure 4: Stochastic determination of a dose to achieve a TAR of 90% for the PK/PD index
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· Implement the model in an Excel sheet   
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The following numerical values will be used for simulation: 

· CL values were assumed to be log-normally distributed with a geometric mean of 60 ml/kg/h and a GSD of 1.1

· Bioavailability (F) was assumed to conform to a uniform distribution i.e. all values had the same occurrence probability in the range of 0.3 to 0.7. 

· The MIC distribution had 5 classes (0.1µg/mL with P=0.1; 0.2µg/m with P=0.2; 0.5µg/mL with P=0.3; 1µg/ml with P=0.3 and 2µg/ml with P=0.2) 
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· Run the model (5000 simulations)

The following results were obtained (Fig.6)

Figure 6: MCS generated probability density of the dose (5000 iterations). The histogram shows the probability corresponding to the different forecast values. Percentile values are given in the lower right panel. The MCS indicates that with the doses of 8.9 and 25.2 mg/kg,  the PK/PD breakpoint of 110h was reached in 50% and 90% of the animals respectively. 
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This simulation confirms that the average (point) approach failed to cover probable outcomes over the entire patient population because with the average dose (13.2 mg/kg) only about 70% of the pigs would achieved the desirable PK/PD breakpoint of 110h.

The MCS and the sensitivity analysis

A major advantage of the PK/PD framework is that it allows the separate evaluation of the principal sources of PK and PD variability. PK variability reflects inter-animal differences for plasma clearance, bioavailability, etc.,  while PD variability is mainly associated with differences in microbial susceptibility (the MICs of the pathogens). 

For the dosage regimen previously calculated, it may be of interest to identify the impact of the various model factors on the final dose.    

Sensitivity analysis is the study of how the variability in the model output (the dose computed with Eq.6) can be apportioned, quantitatively, to different sources of variation in the model input (here CL, F and MIC distribution). If a small change in an input parameter produces relatively large changes in the dose estimation, the dose is said to be sensitive to that parameter.  

The sensitivity chart displays these relationships as the percentage contribution to variance. In our example of empirical antibiotherapy in metaphylaxis, it was obvious that the spread of the MIC distribution was the most influential factor, explaining 90% of the variance (Fig. 7). This suggests that to measure the MIC of a pathogen is more than valuable to adapt a dosage regimen for this antibiotic drug. 

Figure 7 Sensitivity analysis showing that the MIC variability is the most influential factors for the dose.
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CONCLUSION

For antibiotics, a semi-mechanistic approach can be used to determine a dose during preclinical investigations.

























































D0<D1<D2=D3




















c. Dose fractionation to determine time and or concentration dependency of the antimicrobial effect
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