D.U. de Pharmacocinétique

Session de septembre 1999 – Durée : 3 heures

Un laboratoire pharmaceutique développe un nouvel antibiotique. La CMI in vivo pour un germe cible est de $1.0 \,\mu g/mL$.

Cet antibiotique est administré par voie intraveineuse à la dose de 15 mg/kg chez un homme de 70 kg. Le tableau 1 donne les valeurs des concentrations plasmatiques (µg/mL) pour chaque temps de prélèvement. Les urines ont été collectées et la quantité totale du principe actif récupérée est de 10 mg.

TABLEAU 1 : Concentrations plasmatiques (μ g/mL) mesurées après un bolus IV de 20 mg/kg.

Temps (min)	Concentrations (μg/mL)
1	4.97
5	4.84
10	4.68
20	4.38
30	4.09
60	3.35
120	2.25
240	1.01
360	0.45
480	0.20
720	0.0412

L'AUC de 0 à 360 min est égale à 698.85 μ g.min/mL et l'AUMC de 0 à 720 min est égale à 106 515 μ g.min²/mL.

• Question 1 (2 points):

Représentez graphiquement la cinétique en coordonnées semi-logarithmiques.

• Question 2 (2 points):

Calculez l'AUC de 360 à 720 min par la méthode des trapèzes linéaires ; calculez l'AUC de 0 à 720 min (AUC de 0 à 360 min : 698.85 μ g.min/mL).

Par la suite, tous les paramètres dérivés des moments statistiques (AUC, AUMC) seront considérés sans extrapolation.

• Question 3 (2 points):

Calculez la clairance plasmatique (sans extrapolation).

Question 4 (3 points):

Le principe actif se fixe à 90% à l'albumine ; le taux de filtration glomérulaire (TFG) chez l'homme a une valeur de 120 mL/min.

- Quelle est la clairance rénale du principe actif (calcul sans extrapolation) ?
- L'hypothèse selon laquelle l'excrétion rénale du principe actif est uniquement due à la filtration glomérulaire est-elle compatible avec les données expérimentales ?

Question 5 (3 points):

On suppose que l'élimination du principe actif se fait uniquement par excrétion rénale et élimination hépatique avec formation d'un métabolite inactif (le débit sanguin hépatique est égal à 1.5 L/min).

- Quelle est la clairance hépatique du principe actif?
- Peux-t'on envisager de l'administrer par voie orale ?

• Question 6 (3 points):

- Calculez le -MHCI et le Vss par la méthode des trapèzes linéaires (sans extrapolation).
- Quelle est la quantité de principe actif présent dans l'organisme 360 min après
 l'administration intaveineuse ?

• Question 7 (3 points):

 Quelle dose intraveineuse de l'antibiotique permet de maintenir une concentration moyenne efficace in vivo sur un intervalle d'administration de 12 h?

• Question 8 (2 points):

Le laboratoire décide de développer une formulation sous-cutanée ; après administration d'une dose de 30 mg/kg, l'AUC est égale à 900 μ g.min/mL.

- Calculez la biodisponibilité systémique de cette formulation.

• Question 9 (2 points):

Le MRT après administration sous-cutanée est égal à 642 min.

- Quel est le temps moyen d'absorption (MAT) de cette formulation %