European College of Veterinary Pharmacology and Toxicology
Amsterdam, February 27-28, 2014

Antimicrobial Therapy in Animals and Public Health.

Early Treatments With Inoculum-Size-Adjusted Doses to Conciliate Control of Infectious Diseases, Reduction of Antibiotic Consumption and Prevention of Antimicrobial Resistance in Commensal Flora

Alain Bousquet-Mélou, Maleck Vasseur, Aude Ferran, Pierre-Louis Toutain

Department of Physiology, Pharmacology & Therapeutics
Veterinary School, University of Toulouse, France
Medical consequences of antimicrobial resistance in Humans

Europe
More than 25,000 deaths per year
More than 1.5 billion Euros

US
About 23,000 deaths per year
One World, one Health: bacterial ecosystems
Public health concerns are becoming the priorities of a sustainable veterinary antimicrobial therapy.
Public health concerns for antibiotics in animals

Gram-positive bacteria

Meticillin resistant *Staphylococcus aureus* (MRSA)
- Livestock-associated (LA-MRSA), horse, pets
- Direct contact: professionals, owners
- Clonal spread, transient carriages in humans
- To date, limited ability to spread into human population (in the future?)

Role of the pharyngeal flora
Public health concerns for antibiotics in animals

Gram-negative bacteria

Zoonotic foodborne pathogens
- *Salmonella, Campylobacter*
- Food safety
- Self-limiting infections: no inter-human transmission
- Infections generally managed without antimicrobial therapy
Extended-spectrum β-lactamase (ESBL) carrying Enterobacteria

- ALL enterobacteria: « vehicle » of antimicrobial resistance genes
- Clonal + HORIZONTAL transmission (plasmids)
- Spread to the resident flora: inter-bacteria exchanges
- Spread to the human population: inter-human exchanges
Extended-spectrum \(\beta\)-lactamase (ESBL) carrying Enterobacteria

- ALL enterobacteria: « vehicle » of antimicrobial resistance genes
- Clonal + HORIZONTAL transmission (plasmids)
- Spread to the resident flora: inter-bacteria exchanges
- Spread to the human population: inter-human exchanges

The gut is the epicentre of antibiotic resistance

Jean Carlet
Critical bacterial flora for antimicrobial resistance

Digestive tract

Proximal

Distal

Zoonotic pathogens (*Salmonella*, *Campylobacter* …)
Commensal flora (resistance genes)

Blood

Infectious site
Pathogens of veterinary interest

Animal Health

HUMAN

Human Health

AB: parenteral route

AB: oral route

Contact

Food chain

Environment

HUMAN

Amsterdam ECVPT 2014-9
Critical bacterial flora for antimicrobial resistance

Digestive tract

Proximal

Distal

Zoonotic pathogens (Salmonella, Campylobacter ...)

Commensal flora (resistance genes)

Blood

AB: parenteral route

AB: oral route

Infectious site
Pathogens of veterinary interest

ANIMAL HEALTH

HUMAN HEALTH

Food chain
Environment

Contact

HUMAN

Amsterdam ECVPT 2014-10
The current recommendations in human medicine
Current recommendation in human medicine

- Higher [efficacy / resistance prevention] are obtained with **HIGHER antibiotic daily doses**:
 - Fluoroquinolones: Ciprofloxacin, Levofloxacin …
 - Beta-lactams: Amoxicillin, Cephalosporins, Penems
 - Macrolides

- High density bacterial loads harbour sub-populations of reduced susceptibility:
 - **Resistance** / Spontaneous mutations
 - **Tolerance** / Persisters
Current recommendation in human medicine

Fluoroquinolones: Resistances occur by random mutation \((10^{-9})\) on genes coding for FQ targets (DNA gyrase).

Many classes of AB: Subpopulations with lower susceptibility (resistance, tolerance) appear in high density bacterial loads.
Fluoroquinolones: Resistances occur by random mutation \((10^{-9})\) on genes coding for FQ targets (DNA gyrase)

Current recommendation in human medicine

« Hit hard and fast ... »

« Hit hard »

with lower susceptibility (resistance, high density bacterial loads)
Current recommendation in human medicine

Treatment durations are too long (acute infections)

- **Equivalent clinical success** for pneumonia
 - 500 mg levofloxacin 10 days
 - 750 mg levofloxacin 5 days
 Dunbar et al. CID 2003:37 752-760

- **Equivalent clinical success** for acute exacerbations of chronic bronchitis
 - META-ANALYSIS: FLUOROQUINOLONES, BETA-LACTAMS, MACROLIDES
 - 5 days versus 7-10 days
 Falagas et al. JAC 2008:62 442-450
 - AMOXICILLIN – CLAVULANIC ACID
 - 3 days versus 10 days

- **Lower resistance selection** in commensal pharyngeal flora
 - PENICILLIN, AMOXICILLIN, MACROLIDES
 - With **lower durations** of treatments
 Schrag et al. JAMA 2001:286 49-56
 Guillemot et al. JAMA 1998:279 365-370
 Kastner & Guggenbichler Infection 2001:5 251-256
Treatment durations are too long (acute infections)

- **Equivalent clinical success** for pneumonia
 - 500 mg levofloxacin 10 days
 - 750 mg levofloxacin 5 days
 Dunbar et al. CID 2003:37 752-760

- **Equivalent clinical success** for acute exacerbations of chronic bronchitis
 - META-ANALYSIS: FLUOROQUINOLONES, BETA-LACTAMS, MACROLIDES
 - 5 days versus 7-10 days
 Falagas et al. JAC 2008:62 442-450
 - AMOXICILLIN – CLAVULANIC ACID
 - 3 days versus 10 days

- **Lower resistance selection** in commensal pharyngeal flora

« Hit hard and fast ... then leave as soon as possible »
 - with lower durations of treatments
 Schrag et al. JAMA 2001:286 49-56
 Guillemot et al. JAMA 1998:279 365-370
 Kastner & Guggenbichler Infection 2001:5 251-256

« Hit hard and stop early »

File TM, Clinical cornerstone 2003 S3 (S21-S28)
Digestive tract

Proximal

Blood

Distal

Zoonotic pathogens (Salmonella, Campylobacter …)
Commensal flora (resistance genes)

Infectious site
Pathogens of veterinary interest

ANIMAL HEALTH

AB : parenteral route
AB : oral route

« Hit hard … »

Unfavourable ?

Favourable

Amsterdam ECVPT 2014-17
ANIMAL HEALTH

Infectious site
Pathogens of veterinary interest

AB : parenteral route

AB : oral route

Digestive tract

Proximal

Blood

Distal

Zoonotic pathogens (Salmonella, Campylobacter ...)
Commensal flora (resistance genes)

Favourable?

« ... leave asap »

« Hit hard ... »

Favourable
A strategy tailored to antimicrobial therapy in food animals?
Antibiotics in food animals

Hypothesis: The size of the bacterial load at the infectious site influences antimicrobial efficacy.

- Curative treatment of sick animals
- Metaphylaxis (control) Treatment of all the group
- Prophylaxis Prevention

The same dose?

Disease
- High bacterial load (infectious site)
- Symptoms
- No or no growth

Health
- No symptoms
Inoculum size influences antimicrobial activity

1. Clinical and microbiological cure?
 1. *In vitro* evidences of the effect of inoculum size on antimicrobial activity
 2. *In vivo* evidences

2. Resistance selection/prevention at the infection site?
Inoculum size and *in vitro* susceptibility assessment

MICs estimated with different inoculum densities, relative to the MICs at 2×10^5

- Ciprofloxacin
- Gentamicin
- Linezolid
- Daptomycin
- Oxacillin
- Vancomycin

Figure 3. MICs estimated with different inoculum densities, relative to that MIC at 2×10^5. These estimates were obtained from cfu data; when the viable cell density at 18 h was approximately equal to that in the initial inoculum.
Inoculum size and *in vitro* antimicrobial activity

- Ciprofloxacin and imipenem against *Staphylococcus aureus* and *Pseudomonas aeruginosa* (Mizunaga et al. JAC 2005)

 ![Ciprofloxacin](image1)

 ![Imipenem](image2)

 - 10^8 CFU/mL
 - 10^6 CFU/mL

- Marbofloxacin against *Escherichia coli* (Ferran et al. unpublished) - Killing curves analysis

 ![Marbofloxacin](image3)

 - 10^5
 - 10^9

Amsterdam ECVPT 2014-23
Inoculum size and *in vitro* antimicrobial activity

Low inoculum

High inoculum

Marbofloxacin concentrations (MIC multiple)

E. coli

Pasteurella multocida

Pharmacokinetic/pharmacodynamic assessment of the effects of parenteral administration of a fluoroquinolone on the intestinal microbiota: Comparison of bactericidal activity at the gut versus the systemic level in a pig model

Aude A. Ferran⁵, Delphine Bibbal⁵, Terence Pellet⁵, Michel Laurentie⁵, Mireille Gicquel-Bruneau⁵, Pascal Sanders⁵, Marc Schneider⁶, Pierre-Louis Toutain⁵, Alain Bousquet-Melou⁵, Alain Bousquet-Melou⁵, Alain Bousquet-Melou⁵

Amsterdam ECVPT 2014-24
Inoculum size and \textit{in vitro} antimicrobial activity

Active marbofloxacin concentrations against a low inoculum have no activity against a high inoculum.
Inoculum size and *in vitro* antimicrobial activity

- Amoxicillin and Cefquinome (C4G) against *Pasteurella multocida* (Vasseur et al. unpublished) - Killing curves analysis
Inoculum size influences antimicrobial activity

1. Clinical and microbiological cure?
 1. *In vitro* evidences of the effect of inoculum size on antimicrobial activity
 2. *In vivo* evidences

2. Resistance selection/prevention at the infection site?
Inoculum size and clinical or microbiological cure

- Fluoroquinolones and beta-lactams against *Staphylococcus aureus* and *Pseudomonas aeruginosa* (Mizunaga et al. JAC 2005)
- Intraperitoneal infection in mice
- Doses associated with survival

<table>
<thead>
<tr>
<th>Antimicrobial agents</th>
<th>S. aureus ED$_{50}$ (95% CL)a</th>
<th>P. aeruginosa ED$_{50}$ (95% CL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1×10^7 (A)</td>
<td>1×10^9 (B)</td>
</tr>
<tr>
<td>Pazufloxacin</td>
<td>0.0253 (0.0205–0.0340)</td>
<td>0.710 (0.607–0.833)</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>0.0325 (0.0272–0.0435)</td>
<td>0.637 (0.541–0.761)</td>
</tr>
<tr>
<td>Imipenem</td>
<td>0.000933 (0.000595–0.00139)</td>
<td>0.909 (0.575–1.28)</td>
</tr>
<tr>
<td>Panipenem</td>
<td>0.00119 (0.000954–0.00139)</td>
<td>1.05 (0.602–1.65)</td>
</tr>
<tr>
<td>Meropenem</td>
<td>0.0260 (0.0199–0.0330)</td>
<td>>4 NC</td>
</tr>
</tbody>
</table>

Efficacious doses are 10- to 100-fold lower against a 100-fold lower inoculum
Inoculum size and clinical or microbiological cure

- **Fluoroquinolone against *Pseudomonas aeruginosa*** (Jumbe et al. JCI 2003)
- Thigh infection in mice
- Doses associated with log10 CFU reduction

Low

- Marbofloxacin dose: 31 mg/kg

High

- Marbofloxacin dose: 180 mg/kg

Kesteman et al. AAC 2009
Inoculum size influences antimicrobial activity

1. Clinical and microbiological cure?
 1. *In vitro* evidences of the effect of inoculum size on antimicrobial activity
 2. *In vivo* evidences

2. Resistance selection/prevention at the infection site?
Inoculum size and resistant mutant selection

Percentages of rats with resistant* *K. pneumoniae* in their lungs 96h after the start of marbofloxacin treatment

* Growth in the presence of half MPC

Amsterdam ECVPT 2014-31
Inoculum-size adjusted doses at different phases of spontaneously developing infections?
Inoculum-size adjusted doses for early or later treatments

Study 1 - Fluoroquinolone

Research article

Impact of early versus later fluoroquinolone treatment on the clinical; microbiological and resistance outcomes in a mouse-lung model of *Pasteurella multocida* infection

Aude A. Ferran, Pierre-Louis Toutain, Alain Bousquet-Mélou *
Progression of the infection

Intratracheal inoculation
1000 CFU/lung
Pasteurella multocida

Marbofloxacin
- **Two fixed times:** pre-patent phase and patent phase
- **Two doses:** 1 mg/kg and 40 mg/kg

The methodology (1)

- Early Administration: no clinical signs of infection
- Late Administration: anorexia, lethargy, dehydration

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>Bacteria counts per lung (CFU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10^0</td>
</tr>
<tr>
<td>10</td>
<td>10^4</td>
</tr>
<tr>
<td>20</td>
<td>10^8</td>
</tr>
<tr>
<td>30</td>
<td>10^{10}</td>
</tr>
<tr>
<td>40 - 50</td>
<td>10^{10}</td>
</tr>
</tbody>
</table>

Amsterdam ECVPT 2014-34
The results – 1. Clinical outcome (survival)

Observations: 38 hours after marbofloxacin administration or 48 hours after infection for the control group and the "early group".
The results – 1. Clinical outcome (survival)

Observations: 38 hours after marbofloxacin administration or 48 hours after infection for the control group and the « early group ».
Observations: 38 hours after marbofloxacin administration or 48 hours after infection for the control group and the « early group »
The results – 3. Selection of resistant bacteria

Marbofloxacin administrations

Early Late Early Late

Percentages of alive mice with resistant bacteria

control 1 mg/kg 40 mg/kg

Marbofloxacin doses

No resistant bacteria

Amsterdam ECVPT 2014-38
The results – 3. Selection of resistant bacteria

Marbofloxacin administrations

Early Late Early Late

Percentages of alive mice with resistant bacteria

control

1 mg/kg

40 mg/kg

Marbofloxacin doses

No resistant bacteria

Amsterdam ECVPT 2014-39
Inoculum-size adjusted doses for early or later treatments

Study 1 - Fluoroquinolone

- The lower dose of 1 mg/kg marbofloxacin during the pre-patent phase of the infection was associated to:
 - more frequent clinical cure
 - similar bacteriological cure
 - similar selection of resistant bacteria

Than the higher dose of 40 mg/kg during the pre-patent phase of the infection
Inoculum-size adjusted doses for early or later treatments

Study 2 – Beta-lactams
Progression of the infection

The methodology (1)

Air-borne contamination
10 000 CFU/lung
Pasteurella multocida

Amoxicillin *MIC = 0.125 µg/mL*
Cefquinome *MIC = 0.016 µg/mL*

Early Treatment
Late Treatment
mice observed twice-daily

Time after challenge (hours)

Bacterial counts per lung (Log CFU/lung)

no clinical sign of infection
anorexia, lethargy, dehydration

healthy
sick
dead
The methodology (2)

- High-inoculum adjusted doses for **sick animals**:
 - PK/PD: $T_{>\text{MIC}} > 50\%$ dosage interval

<table>
<thead>
<tr>
<th>Antibiotic concentration (µg/mL)</th>
<th>Time (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0001</td>
<td>0</td>
</tr>
<tr>
<td>0.001</td>
<td>4</td>
</tr>
<tr>
<td>0.01</td>
<td>8</td>
</tr>
<tr>
<td>0.1</td>
<td>12</td>
</tr>
<tr>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>100</td>
<td>24</td>
</tr>
<tr>
<td>1000</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>0.1</td>
<td>16</td>
</tr>
<tr>
<td>0.01</td>
<td>20</td>
</tr>
<tr>
<td>0.001</td>
<td>24</td>
</tr>
</tbody>
</table>

Doses (mg/kg)

<table>
<thead>
<tr>
<th></th>
<th>Amoxicillin</th>
<th>Cefquinome</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-inoculum adjusted doses</td>
<td>50</td>
<td>10</td>
</tr>
<tr>
<td>Half HIAD</td>
<td>25</td>
<td>5</td>
</tr>
</tbody>
</table>
The methodology (3)

- Low-inoculum adjusted doses for early treatments:
 - Activities against low vs high *P. multocida* inocula: *in vitro* killing curves

![Graph showing killing curves for Amoxicillin and Cefquinome against *P. multocida* at two different inoculum levels.](image)

Doses (mg/kg)

- **Low-inoculum adjusted doses**
 - Half LIAD

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>Dose (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amoxicillin</td>
<td>5</td>
</tr>
<tr>
<td>Cefquinome</td>
<td>1</td>
</tr>
</tbody>
</table>

Amsterdam ECVPT 2014-44
The results – 1. Clinical cure

Later treatments of sick animals

% of sick mice with no symptom at day 7

<table>
<thead>
<tr>
<th>Doses mg/kg</th>
<th>AMOX</th>
<th>CEFQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>* 0%</td>
<td>* 0%</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* All mice died within 7 days

Early treatments of all animals

% of mice with no symptom between day0 and day7

<table>
<thead>
<tr>
<th>Doses mg/kg</th>
<th>AMOX</th>
<th>CEFQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Amsterdam ECVPT 2014-45
The results – 2. Microbiological cure

Later treatments of sick animals

% of treated mice with bacteriological cure

<table>
<thead>
<tr>
<th>Doses mg/kg</th>
<th>AMOX</th>
<th>CEFQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>* 0 %</td>
<td>* 0 %</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* All mice died within 7 days

Early treatments of all animals

% of mice with bacteriological cure

<table>
<thead>
<tr>
<th>Doses mg/kg</th>
<th>AMOX</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>* 0 %</td>
</tr>
<tr>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>* 0 %</td>
</tr>
</tbody>
</table>

Amsterdam ECVPT 2014-46
Inoculum-size adjusted doses for early or later treatments

Study 2 – Beta-lactams

- For both amoxicillin and cefquinome, the low-inoculum adjusted doses (10-fold lower) given during the pre-patent phase of the infection were associated to:
 - Similar clinical performance (100%)
 - More frequent bacteriological cure

When compared to the high-inoculum adjusted doses (10-fold higher) given later during the patent phase of the infection (sick animals)
What impact of digestive bacterial flora?
Intratracheal inoculation

10^5 or 10^9 CFU/lung

Pasteurella multocida

Gnotobiotic rats

Gut colonization

Pig faeces

CTX-M (ESBL) producing *E coli*
The results – 1. Clinical cure

- 100% of infected (10^5 or 10^9 CFU) and untreated mice became sick and died

- Clinical and microbiological cure rates of 100% with:
 - High-inoculum adjusted dose (50 mg/kg) during the patent phase of the infection (sick mice)
 - Low-inoculum adjusted dose (5 mg/kg) during the pre-patent phase of the infection
The results – 2. Impact on digestive flora

- The Low-inoculum adjusted dose (5 mg/kg) during the pre-patent phase of the infection
 - Cured the pulmonary infection
 - Averted any amplification of CTX-M-producing enterobacteria
Conclusion

• Hit HARD and FAST, and stop EARLY

• For food-producing animals
 • Low-inoculum adjusted doses during the pre-patent phase of an acute infection might constitute a promising strategy for the optimization of antibiotic dosage regimens
 • To ensure infectious diseases control while minimizing the animal reservoirs of resistance genes of human concern