3. EXEMPLE 3

3.1. Objectifs

- Réaliser un test de la linéarité d'une droite de régression (test de lack-of-fit)
- Réaliser un ajustement avec la composante quadratique et en tester la signification

Ces tests sont à réaliser lors de la validation initiale car ils nécessitent des répétitions (plusieurs valeurs de Y pour un X donné).

3.2. Généralités

En général la courbe de calibration "du jour" (c'est-à-dire celle qui est construite quotidiennement) sera une simple droite. Lors de la validation initiale il importera de valider ou d'invalider cette hypothèse par un test de linéarité. Si au cours de la validation initiale, on démontre que dans la gamme des concentrations sélectionnées on a bien une droite, alors cette hypothèse sera systématiquement acceptée pour les droites du jour (en d'autres termes on ne vérifiera pas l'hypothèse de linéarité avec les droites du jour).

Il se peut que dans la gamme des concentrations considérées, l'hypothèse de linéarité soit rejetée mais que la prise en compte d'une **composante quadratique** (c'est-à-dire d'un terme significatif en X²) améliore la calibration. Cela veut dire que la calibration se fera avec une courbe et non une droite, ce qui peut être un avantage dans la mesure où on pourra avoir une large gamme de concentrations dans la même courbe. L'alternative serait de "rétrécir" la courbe du jour pour en faire une droite mais cela obligerait à faire des dilutions des échantillons ayant les concentrations les plus élevées.

Nous allons examiner dans cet exercice ces différentes questions.

Le tableau 3.1 donne un exemple de résultats analytiques pour construire la courbe de calibration avec 8 niveaux de concentration ayant chacun 3 répétitions.

La figure 3.1. montre le tableau des données à monter dans WinNonlin.

Concentrations théoriques (nominales)	Réponses chromatographiques
0.10	0.49
0.10	0.67
0.10	0.52
0.25	1.11
0.25	1.01
0.25	1.07
0.5	2.13
0.5	2.13
0.5	2.33
1.25	7.24
1.25	5.82
1.25	5.75
2.5	14.4
2.5	11.8
2.5	11.3
5	22
5	23
5	21
10	43
10	46
10	38
20	119
20	130
20	110

Tableau 3.1 : Gamme des concentrations et réponse chromatographique obtenue – unités arbitraires.

Figure 3.1. Les données du tableau 3.1 doivent être saisies dans WinNolin pour faire l'exercice. La colonne "*level*" contient un code de 1 à 8 correspondant aux 8 niveaux de concentrations; "*weight_x*" est le poids 1/X et "*weight_x2*" est le poids $1/X^2$

3.3. Ajustement des données à une droite non pondérée et pondérée

Commençons par ajuster les données du tableau 3.1 à une droite sans pondération. On obtient l'équation :

Y = 5.7682 X - 2.7289 (avec r = 0.9857)

La figure 3.2 donne une représentation graphique de la droite ajustée. Son inspection suggère que :

- (i) la réponse chromatographique n'évolue pas de façon linéaire avec les concentrations mais plutôt selon une courbe concave vers le haut
- (ii) la dispersion des réponses chromatographiques augmente avec les concentrations, c'est-à-dire que les variances augmentent avec les concentrations.

Cette double impression est confirmée par l'inspection du graphique des résidus (fig. 3.3). Il montre que les résidus ne sont pas répartis au hasard de part et d'autre de l'horizontal (résidu d'ordonnée 0) mais qu'ils suivent une tendance décroissante de la concentration 0.1 à la concentration 10, pour remonter avec la concentration 20. De plus, la dispersion des résidus augmente avec les concentrations.

Dans WinNonlin il n'est pas possible de faire simplement un test d'homogénéité des variances sur les résidus (test de Bartlett). Néanmoins, l'inspection des variances de résidus montre immédiatement que les variances ne sont pas homogènes pour les différents niveaux de concentration (c'est-à-dire qu'elles ne sont pas du même ordre de grandeur). On peut vérifier cela en faisant appel à l'outil "descriptive statistics" avec "Level" comme **"sort variable"** et **"Response**" comme **"summary variable**" (Sort en anglais signifie trier) (fig. 3.4).

Figure 3.2 : Graphique de la droite de régression obtenue en ajustant les données du tableau 3.1 à une droite sans pondération. On notera que les concentrations mesurées pour les concentrations 5 et 10 sont nettement au-dessous de la droite et que la dispersion des concentrations mesurées augmente avec les concentrations. De plus les réponses prédites pour 0.1 et 0.25 sont négatives !

Figure 3.3 : Répartition des résidus obtenus en ajustant les données du tableau 3.1 avec une droite de régression non pondérée. On notera la forme de banane dessinée par les résidus et la dispersion qui augmente de façon croissante avec celle des concentrations.

Figure 3.4 : Fenêtre pour effectuer des statistiques descriptives sur les résidus et inspecter les variances et coefficients de variation.

Le tableau des résultats statistiques peut être édité pour faciliter l'inspection des données. Pour cela, avec le click droit de la souris faire "*Detach*" ce qui permet d'éditer directement la feuille des résultats (fig. 3.5). Ensuite on élimine avec "*Delete*" les colonnes inutiles (fig 3.6). L'inspection de la figure 3.6 montre que les variances augmentent avec les concentrations (de 0.0093 à 100.33) ce qui indique une non-homogénéité (non-égalité) des variances. En revanche, les coefficients de variation sont similaires (de 4.5 à 17%) ce qui nous indique qu'une pondération va s'imposer (en 1/X²).

Figure 3.5 : pour pouvoir éditer une feuille de résultats dans WinNonlin il convient de la déverrouiller avec la fonction "*Detach*" par un click droit de la souris.

0	07 0														
	Variable	level	N	Nmiss	Nobs	Mean	SD	SE	Variance	Min	Median	Max	Range	CV%	Geometri
	réponse	1	3	0	3	0.5600	0.0964	0.0557	0.0093	0.4900	0.5200	0.6700	0.1800	17.2208	
	réponse	2	3	0	3	1.0633	0.0503	0.0291	0.0025	1.0100	1.0700	1.1100	0.1000	4.7334	
	réponse	3	3	0	3	2.1967	0.1155	0.0667	0.0133	2.1300	2.1300	2.3300	0.2000	5.2566	
	réponse	4	3	0	3	6.2700	0.8408	0.4854	0.7069	5.7500	5.8200	7.2400	1.4900	13.4095	
	réponse	5	3	0	3	12.5000	1.6643	0.9609	2.7700	11.3000	11.8000	14.4000	3.1000	13.3147	
	réponse	6	3	0	3	22.0000	1.0000	0.5774	1.0000	21.0000	22.0000	23.0000	2.0000	4.5455	
	réponse	7	3	0	ndo	42.3333	4.0415	2.3333	16.3333	38.0000	43.0000	46.0000	8.0000	9.5467	
	réponse	8	3			19.6667	10.0167	5.7831	100.3333	110.0000	119.0000	130.0000	20.0000	8.3705	
				C	ut										
				c	opy										
				PA	aste										
				P	aste values										
				c	lear Values										
				Ir	sert										
				D	elete										
						-									
				F	ormat										
				B	efresh										
				E	dit										
				D	etach										
					24	-									
				Pi	roperties										
						-									
r	Sheet1 🔨	History /							1						
															CARS MU

Figure 3.6 : Variances et coefficients de variation des réponses chromatographiques du tableau 3.1 pour les différents niveaux de concentration. On note un grande hétérogénéité des variances ; en revanche les coefficients de variation (CV%) sont homogènes ce qui plaide en faveur d'une pondération par $1/X^2$.

"T WinNo	onli	n											Friday	August 18	- 8:11 AM	- 59 MB	- 7 🛛
File Edit	Dat	a Cha	rt Model	Tools Wind	dow Help												
📄 🝷 💕		63	a 🐰 🗈	🛍 ダ	1 2 E	fn x	2 IS 8	3 18 18	*** 🖬 🗄 !	1801 ML @	1 🚟 🕍						
															(C)(C)		
		Workl	book - [C:\	\data_	validatior	_tab	ole3.1.pw	0]									
		110															
			conc I	réponse	level	wei	iahina1 \	Neighing2	F	G	н	1	J	к	L		
	1	0	1.05	. 7.24			0.0	0.64									
	1	1	1.25	5.82	-		0.0	0.64					-				
	1	2	1.25	5.75			0.8	0.64									
		🗋 De	scriptive S	Statistics '	Workbool	- [U	Untitled68] (Detached	d)						_		
	H	1	26														
		-	Variable	e level	N		Mean	Variance	CV%	G	н	1	J	к	L	-	
			, and the			0	0.5000	0.0000	17.0000				, in the second				
		1	reponse		1	3	1.0633	0.0093	4 7224		-	-					
		2	repunse		2	2	1.0633	0.0025	4.7334		-	-				-	
		3	réponse	-	4	3	2.150/ 6.2700	0.0133	12 4095		-	-				-	
		5	rónonco	-	5	3	12,5000	2 7700	13 31/7					-		-	
		6	rénonce	-	6	3	22,0000	1,0000	4.5455							1	
		7	réponse		7	3	42 3333	16,3333	9 5467						5		
		8	réponse		8	3	119.6667	100.3333	8.3705								
		9															
	4	10															
10		11														1	
		12															
		13															
		14			_	_											
		15		-	_	-					-	-					
		16	-	-	-	-											
		1/	01	(11-1	,	_					1.1.1	1		-			
		• •	Sneet1 ,	∧ History	/	_	_	_	_	_	1					•	
-	_	_	_			_	_					_	_				CAPS NUM
🛃 déi	ma	rrer		WinNonlin			🗁 WinNo		- TE - 1	VinNonlin		💌 Fig3.4	fonction del		FR	30,8	
			1	A 🔻 🤋	2 🛛 🗖	W	6) 49 M			1 =	POP © 0	1 -0					Friday 8/18/2006
			1.00			-				and the second second		TAN .				- Carlor (1997)	0/10/2000

Cela plaide pour un facteur de pondération de 1/X². Nous allons donc modéliser ces données avec un facteur de pondération 1/X².

On va réaliser cette régression pondérée en plaçant le vecteur "*Weight_X2*" dans la boite "*Weights on file columns*" après avoir ouvert les onglets "*Model option > Weight*" (fig.3.7).

Figure 3.7 : Les paramètres de la droite de régression

														a	
Dia	ear Workbook	r . fi intit	led101 (Der	ived)											
-	A1 INT														
	Parameter	Units	Estimate	StdError	CV%	UnivarCI_Lower	UnivarCl_Upper	PlanarCl_Lower	PlanarCl_Upper	J	к	L	м		
1	INT		0.050075	0.049390	98.63	-0.052353	0.152502	-0.082586	0.182736						
2	SLOPE		4.750065	0.191964	4.04	4.351960	5.148171	4.234450	5.265680						
3															
5															
6															
8														- 1	
9											-			-	
10															
11														- 1	
13														-	
14															
15													-	-81	
17															
18														-	
100	\Initial Param	eters 🔨 N	dinimization	Process /	Final Para	ameters 入 Non-Tra	insposed Final Pa	rameters 🛛 📢 👘						• v	
17 Be	ead Only								1		Line	1/168		10	
18	5	21	6	0.2	0.04										
20	10	43	7	0.1	0.01										
21	10	38	7	0.1	0.01										_
22	20	119	8	0.05	0.0025										
23	20	130	8	0.05	0.0025									_	
24	20	10	0	0.05	0.0025										

Les paramètres estimés sont donnés dans l'onglet "*Non transposed final Parameters*" (fig. 3.8) avec **"a" = 4.7501 (pente)** et **"b" = 0.0501 (intercept**).

Figure 3.8 : Paramètres de la droite de régression estimés pour le modèle de régression pondérée par 1/X².

La courbe ajustée et les valeurs observées sont données sur la figure 3.9. Les résidus pondérés sont présentés sur la figure 3.10.

Figure 3.9 : Courbe de calibration obtenue avec un modèle linéaire et une pondération de 1/X². L'inspection de la figure montre que la droite, même pondérée donne un mauvais ajustement.

Figure 3.10 : Répartition des résidus obtenue en ajustant les données du tableau 3.1 avec un modèle linéaire simple et une pondération de 1/X². L'inspection des résidus suggère que la dispersion des résidus, pour chaque niveau de concentration, est similaire ce qui plaide en faveur de l'adéquation de la pondération en 1/X². En revanche, la répartition des résidus forme une banane ce qui suggère que le modèle linéaire simple n'est pas adéquat

L'inspection des résidus suggère que le schéma de pondération est adéquat (même dispersion des résidus par niveau de concentration) mais qu'ils forment une sorte de banane (on dit qu'il y a de la structure) ce qui suggère que le modèle de la droite n'est pas satisfaisant. Nous allons vérifier cela avec un test de "lack of fit" qui va tester l'hypothèse que le modèle est bien (ou non) une droite de type Y = aX + b.

3.4. Test de linéarité d'une droite

Avant d'accepter la simple droite comme modèle pour la droite de calibration du jour (droite du jour), on doit au moins vérifier lors de la validation initiale qu'il s'agit bien d'une droite de type Y = aX + b.

On dispose de 3 approches différentes pour accepter ou refuser la droite comme model par défaut.

- l'inspection visuelle de la figure et de celle des résidus. Si manifestement, on observe une répartition en banane des résidus, on peut éliminer la droite comme modèle par défaut sans faire de test.
- Faire un test statistique de linéarité (test of lack of fit) c'est ce que nous allons faire dans cette section

3) Faire les calculs de calibration inverse et voir si les valeurs prédites de X par calcul inverse sont acceptables. En effet, il se peut que le test de linéarité rejette l'hypothèse de linéarité mais que les calculs inverses soient acceptables. Ce cas de figure survient avec des techniques analytiques très reproductibles (automates) ; Compte tenu de leur excellente précision, la moindre déviation à la linéarité est détectée par les tests statistiques sans que cela ait une incidence pratique.

On notera que le calcul du coefficient de corrélation (r) n'est pas une bonne approche pour tester la linéarité et un r = 0.999 peut correspondre à une courbe plutôt qu'à une droite.

Dans cette section nous allons expliquer comment procéder avec WinNonlin pour tester la linéarité en sachant qu'il n'y a pas de test par défaut offert dans WinNonlin. Il faudra donc le faire à la main !

3.4.1. Test de lack of fit (calcul manuel pour une droite non pondérée)

Pour comprendre le principe nous allons faire intégralement le test de linéarité à la main c'est-à-dire avec la simple aide d'une feuille Excel.

Commençons par en expliquer le principe.

La figure 3.11 montre que la somme des carrés de la résiduelle (SStotale) obtenue à l'issue d'une régression par un modèle simple (ou plus complexe) peut être répartie en ses 2 composantes : une partie liée à l'erreur pure (pure error SS) et une partie liée au défaut d'ajustement (SS lack-of-fit). On peut donc écrire :

SS_{totale} = SS_{lack of fit} + SS_{pure}

Et le SS lack of fit sera obtenu par différence

 $SS_{lack of fit} = SS_{total} - SS_{pure}$

Figure 3.11 Lack of fit et erreur pure (d'après Draper & Smith) (d.f. : degré de liberté)

La figure 3.12 montre les 2 sources d'un défaut d'ajustement : une source d'erreur expérimentale (qui peut être réduite en augmentant la précision de la technique analytique) et un défaut d'ajustement (qui peut être réduit en sélectionnant un meilleur modèle de régression).

Figure 3.12 : représentation graphique des 2 sources d'un défaut d'ajustement des données brutes à un modèle de droite

La variance de l'erreur pure notée S_e^2 (encore nommé carré moyen et qui est la "pure SS error" divisée par son nombre de degré de liberté) est une variance qui est indépendante du modèle. Pour être estimée elle nécessite des réplications (plusieurs valeurs observées de Y pour chaque X). Cette variance (S_e^2) est un estimateur de la variance (σ^2) des données brutes et elle calculée en prenant en compte, pour chaque niveau de concentration, la moyenne (\overline{Y}) des données brutes (Y_i).

Cette même variance peut également être estimée en prenant en compte non pas les \overline{Y} (moyennes observées à chaque niveau de concentration), mais les moyennes estimées pour les différents niveaux de concentration par la droite de régression ajustée et qui seront notées \hat{Y} (ou Y chapeau). Si la relation entre X et Y est bien une ligne droite, les déviations des valeurs observées de Y_i à la droite ajustée ne doivent être dues qu'à la variabilité intrinsèque des Y_i (ou encore les \overline{Y} et les \hat{Y} doivent être très similaires). Si la relation entre X et Y n'est pas une droite, la variance, telle que mesurée à partir des déviations (résidus) des Y_i à la droite ajustée ajustée, seront augmentées à cause de la non-linéarité.

Le principe des tests de non-linéarité va donc consister à comparer deux variances : la variance de l'erreur pure (the pooled error for the Y_i replicates, or the within mean square) avec la variance des déviations des Yi à la droite ajustée (deviation from regression).

La figure 3.13 montre la façon de calculer ces deux variances.

Figure 3.13 Estimation des variances pour réaliser un test de non-linéarité (ici 2 points par niveau). Une première variance (celle de l'erreur pure) peut être calculée en ne tenant pas compte du modèle de régression. La variance de l'erreur pure est calculée en prenant en compte la moyenne des données observées à chaque niveau de concentration (\overline{Y} , •). Une seconde approche pour calculer une autre variance consiste à considérer la moyenne prédite par la droite de calibration (notée \hat{Y} ,O et non \overline{Y}). Si ces deux variances sont similaires (c'est-à-dire si les \hat{Y} et les \overline{Y} sont similaires), alors cela veut dire que le modèle de régression est adéquat et n'entraîne pas de distorsion (lack of fit).

Nous allons maintenant procéder à ces calculs pour notre exemple du tableau 3.1. en commençant par l'erreur pure (S_e^2) .

La SS recherchée est obtenue en calculant pour chaque niveau les $(Y_i - \overline{Y})^2$ avec Yi les données brutes et \overline{Y} , la moyenne de chaque niveau de concentration. De façon plus formelle :

$$SS_{total} = \sum_{j=1}^{n=8} \sum_{\nu=1}^{n=3} (Y_{j\nu} - \overline{Y}_j)^2$$

avec j le nombre de niveau de concentration (ici 8 niveaux de concentration) et v le nombre de réponses par niveau de concentration (ici le même nombre de réponses de 3 par niveau).

Le calcul de la variance de l'erreur pure nécessite de connaître le nombre de degré de liberté (ddl) appelé en anglais degree of freedom (df) avec :

$$ddl(ne) = \sum_{j=1}^{8} (nj-1) = \sum_{j=1}^{m} nj - m$$

soit pour notre exemple ne = $3 \times 8 - 8 = 16$ La S_e^2 pure est donc

$$S_{e}^{2} = \frac{\sum_{j=1}^{n=8} \sum_{\nu=2}^{n=3} (Y_{j\nu} - \overline{Y}_{i})^{2}}{\sum_{j=1}^{m} nj - m}$$

Cette S_e^2 est une estimation de σ^2 la variance interne aux données brutes. Pour notre exemple :

 $S_e^2 = 242.33/16 = 15.146$

Le tableau 3.2 donne le détail des calculs effectués avec Excel.

Concentrations	Réponses	\overline{Y}	$(Y_i - \overline{Y})^2$	$SS_{(Y_{c}-\overline{Y})^{2}}$	Var
théoriques	chromatographiques				
(nominales)	- 10				
0.10	0.49		0.0049		
0.10	0.67	0.560	0.0121	0.0186	0.0093
0.10	0.52		0.0016		
0.25	1.11		0.002177		
0.25	1.01	1.0633	0.002844	0.005066	0.002533
0.25	1.07		0.0000444		
0.5	2.13		0.00444		
0.5	2.13	2.1966	0.00444	0.0266	0.01333
0.5	2.33		0.0177		
1.25	7.24		0.9409		
1.25	5.82	6.270	0.2025	1.4138	0.7069
1.25	5.75		0.2704		
2.5	14.4		3.61		
2.5	11.8	12.50	0.49	5.54	2.77
2.5	11.3		1.44		
5	22		0.00		
5	23	22.00	1.00	2.00	1.00
5	21		1.00		
10	43		0.444		
10	46	42.333	13.444	32.666	16.33
10	38		18.777		
20	119		0.444		
20	130	119.666	106.777	200.666	100.33
20	110		93.444		
		SS ara	and total :	242.33	
L	1	9.	S_e^2 :	15.146	1
provide the second s			č		

Tableau 3.2 Calculs à réaliser avec Excel pour estimer l'erreur pure des données du tableau 3.1 (within S²)

 \overline{Y} : moyenne par niveau de concentration

 $SS_{(Y_i - \overline{Y})^2}$: résidu élevé au carré. Ex.: (0.49-0.56)² = 0.0049

Moyenne des variances des données par niveau

La droite de régression sans pondération est donnée avec l'équation

Y = 5.7682 X - 2.7289 (voir section 3.3)

Avec cette droite nous pouvons estimer, pour chaque niveau de concentration, la valeur de la réponse prédite (\hat{Y}); par exemple pour la concentration 0.5 : $\hat{Y} = 0.155$. Avec ces valeurs prédites, nous allons recalculer l'erreur en remplaçant les \overline{Y} du tableau 3.2 par les \hat{Y} ; les calculs intermédiaires sont donnés dans le tableau 3.3.

Concentrations	Réponse	\hat{Y}	$(Y_i - \hat{Y})^2$	$SS_{(Y_i-\hat{Y})^2}$
theoriques	chromatographique			
(nominales)	0.40	0.450		
0.10	0.49	-2.152	6.980	
0.10	0.67		7.964	22.085
0.10	0.52		7.1402	
0.25	1.11		5.74507	
0.25	1.01	-1.2868	5.27569	16.57
0.25	1.07		5.55492	
0.5	2.13		3.89997	
0.5	2.13	0.1552	3.89997	12.5298
0.5	2.33		4.729903	
1.25	7.24		7.610255	
1.25	5.82	4.48133	1.792035	11.0118
1.25	5.75		1.609521	
2.5	14.4		7.335398	
2.5	11.8	11.6916	0.011749	7.500503
2.5	11.3		0.153355	
5	22		16.90983	
5	23	26.1121	9.685515	52.72948
5	21		26.134139	
10	43		142.88033	
10	46	54.9531	80.160793	510.45401
10	38		287.41289	
20	119		112.63	
20	130	112.6351	40.504	348.98
20	110	_	301.527	·
		SS gra	ind total	981.8672
\hat{Y} : valeur prédite par la	a droite de régression Y	= 5.76822 X -	- 2.7889441	Ť

Tableau 3.3 Calcul de l'erreur résiduelle lorsque les données sont ajustées avec une droite non pondérée.

Total qui sera donné par WN avec un ajustement sans pondération

La somme totale des carrés des résidus (SS_{total}) estimée est de 981.867 contre 242.33 pour les calculs faits avec \overline{Y} .

La différence est due à la SS du lack-of-fit qui est de

Cette SS_{lack-of-fit} est à 6 ddl et la variance correspondante du lack-of-fit est de 739.54/6=123.26.

C'est cette variance qui doit être comparée à la variance résiduelle soit :

$$F_{16}^{6} = \frac{123.26}{15.146} = 8.137$$

A comparer au F_{16}^6 critique qui est de 2.74 pour P=0.05 et 4.20 pour P=0.01.

Il apparaît donc que ce test de linéarité conduit à rejeter la droite comme modèle car 8.137 est supérieur à 2.74 et à 4.20. La droite sera rejetée pour P<0.01.

Le tableau 3.4 donne le tableau de l'ANOVA pour faire le test de non-linearité.

		A	nalysis of varia	ince	
Source	Sum of squares	Df	Mean	F-ratio	Prob.level
			square		
Model	33649.849	1	33649.849	753.97	000
Residual	981.86720	22	44.63033		
Lack-of-fit	739.52974	6	123.25496	8.1377	0.0038
Pure error	242.33747	16	15.14609		

3.4.2. Test du lack of fit pour une droite non pondérée avec WinNonlin

Après avoir ajusté les données du tableau 3.1. à une droite non pondérée, WN donne directement dans la feuille "Diagnostic" la Residual SS" de 981.867 qui est la SS_{totale} (erreur pure et celle du lack-of-fit) avec sa variance de 44.63 (fig 3.14).

Figure 3.14 :

WinNor	ılin																
e Edit (Data Chart Mo	del T	ools Window Help														
- n2		(D)	Sort	F5	85	The left for the	1. 22 1		A. 1								
			Transform	F6	·		A Distance of			_	_	_	_	_	_	_	_
			Merge	F7													
			Descriptive Statistics	F8													
M Word	khook - fC-\De	ac un	Status Codes (i.e. BQL).														
	ingeni - Lei de		Multi-Transform														
A	1 0.1		Copy Workbook														
	conc		Nonparametric Superpos	Rion	k_calc	Deviation*	ч	1	1	ĸ	1.1	м	N	0	P	0	-
	(ug/mL)	pon	Semicompartmental Mode	eling	g/mL)	Deviationa			3	n	-			0		ų.	
1	0.1	0.	Crossover Design														
2	0.1	0.	Deconvolution														
3	0.1	0.	Chart Warred	ONLINE.	-												
4	U.25	1	DKIDDINCA Analyziz With	and Orlang	-												
C C	0.25	1	Table Wizard	Orl+E11	-	-											
0	0.25	- 1	Linear Mixed Effects Wiz	ard Ctrl+F12	-						-						
6	0.5	2	Bioequivalence Wigard														
9	0.5	2															
10	1.25	7 -	Refresh All														
11	1.25	5	Options		-												
12	1.25	5.75	5 4 0.	8 0.64	-												
13	2.5	14.4	4 5 0.	4 0.16													
14	2.5	11.8	3 5 0.	4 0.16													
15	2.5	11.3	3 5 0.	4 0.16													
16	5	22	2 6 0.	2 0.04													
17	5	23	3 6 0.	2 0.04													
18	5	21	1 6 0.	2 0.04													
19	10	43	3 7 0.	1 0.01													
20	10	46	5 7 O.	1 0.01		-											H
21	10	38	d 7 0.	1 0.01													
22	20	115	9 8 0.0	5 U.UU25													
23	20	130		6 0.0025							-						
24	20	III	3 0.0	0 0.0025							-						
26						1					1						
27																	
28																	
. 22.0	Oberett (18e			1		1			1								
	Srieeu A His	ion/ /								•						_	
dám	arren	0.	ana d'accuail da Lin	an unterest	_												N 17:53
- dem	aner	Cha	sge u accuertos reg	A MUNICIPU												1 C	dinand
		0 6	🖸 🖸 🖸 🗐 🥥	🖬 🗐 🖬 🗢 🛛	3 W B	3 🔣 💼 🔍 🎙											04/05/20
							· · · · ·									- ×	e it e et e

Il ne nous reste qu'à calculer l'erreur pure. Pour cela, on utilisera l'outil WinNonlin "*Linear Mixed Effect Wizard*" ou CTRL+F12. Après avoir fermé, le cas échéant, le modèle en cours et ouvrir l'outil avec "*Tool > Linear Mixed Effect Wizard*" (fig 3.15).

- 🐸	88	<u>x</u> 46	Sort Transform		F5 F6	ða 6			2 8	특성	_	_	_	_	_	_	_	
			Merge		F7													
			Descriptive Stat	BO(S	F8												_	
Wo	rkbook - [C:	(Doc un	Milli-Transform	e. bQt)													_	
Å	A1 0.1		Copy Workbook															
	conc					k cale		1000			1			1.000	1.00	1.000		_
	(ug/mL)	respon	Nonparametric :	superposition ntal Modelina		g/mL)	Deviation%	н	1	J	к	L	м	N	0	Р	Q	
1	0.1	0.	Crossover Desir	in		-												
2	0.1	0.	Deconvolution															
3	0.1	0.	Charle Ulbrand		0-1-00	-												
4	0.25	1.	PKIPDINCA Ana	lysis Wizard	Orl+F9	-				-								
6	0.25	1.	Table Wizard	iyoo mearann	Ctrl+F11	-			-									
7	0.25	2	Linear Mixed Eff	ects Wizard	Orl+F12	-												
8	0.5	2	Bioequivalence !	Nieard														
9	0.5	2	Refrech Al															
10	1.25	7	Refrestiva			-												
11	1.25	5.	Options															
12	1.25	5.7	5 4	0.8	0.64													
13	2.5	14.	4 6	0.4	0.16													
14	2.5	11.	8 5	0.4	0.16													
10	2.5		3 5 7 6	0.4	0.16													
17	5	2	3 6	0.2	0.04				-	-								
18	5	2	1 6	0.2	0.04													
19	10	4	3 7	0.1	0.01													
20	10	4	6 7	0.1	0.01													
21	10	3	8 7	0.1	0.01				-									
22	20	11	9 8	0.05	0.0025				-	-								
23	20	13	0 8	0.05	0.0025		-		-	-								
24	20	11	u 8	0.05	0.0025							-			-			
26										-								
27																		
28																		
1720	Sheet1 & H	listory /	, <u> </u>							-								
	Concert 7(1	notory /																

Figure 3.15 : Ouverture du module d'ANOVA de WinNonlin.

Après avoir ouvert ce module, faire glisser dans la fenêtre "*Classification" "level*" et dans "*Dependent variable*" le vecteur "*Response*". Ensuite et ensuite seulement faire glisser "*Level*" dans "*Model specification*" pour préciser qu'il s'agit d'une simple ANOVA à un facteur (level) (Fig. 3.16).

Figure 3.16 : Construction du modèle d'ANOVA a un facteur dans WinNonlin pour estimer la variance de l'erreur pure.

"Z Wi	nNo	nlin													-	ΞX
File E	idit				v Help											
III - 1	1	🖬 🙈 😭	🐰 🕰 🖬	a 🛷 9	1 2 f= ž		1 1 1 1 2 1 4 /									
																~
		kbook - IC	Wocum	\exemple	3 validation	.pwo]										
	٨	1 0.1														
	-				-		6-1-						1			
		(ug/mL)	response	level	weight_x	 CHIMIX FIXed LT 	18015					0	Р	Q	R	
	1	0.1	0.49	1	10	⊻ariable Collection	Sort Variables	Regressors/Covariates	Weight Variable		Clear Model					
	2	0.1	0.67		10	conc unight a			1							
	4	0.1	1.11	2	2 4	weight_x2					Load				-	
	5	0.25	1.01	2	2 4	Deviation%					Save As.					
	6	0.25	1.07	2	2 4											
	7	0.5	2.13	3	3 2		Classification Variables	Dependent Variables	Fixed Effects		Previous					
	8	0.5	2.13		2 2		level	response	Confidence Level	1 95 %	Model					
1	10	1.25	7.24	Ă	, <u>,</u> 1 0.8				Dependent Varial	hies					-	
1	11	1.25	5.82	1	1 0.8				Transformation							
1	2	1.25	5.75	4	4 0.8				None	-						
1	13	2.5	14.4	6	5 0.4	Model Specification										
	14	2.5	11.8	6	5 0.4	level			General	r I				-		
1	16	5	22	è	5 0.2	10101				-						
1	17	5	23	6	6 0.2				☐ No Intercept							
1	8	5	21	6	5 0.2											
1	19	10	43		7 0.1											
2	20	10	38		7 0.1	Help		Nest>	Calculate I	Cancel						
2	2	20	119	6	3 0.05											
2	23	20	130	8	3 0.05	0.0025										
2	24	20	110	8	3 0.05	0.0025				-						
2	6															
2	7															
2	28															
۱.	N.	Sheet1 🔨	History /													
					-								_		Inene	All no
-			500												ILAPS	7156
			Pag		se req	a WinNordin								R	dir.	anche
			00	o 🛯 🕻	3 🕙 🧶 🖬	📵 🖬 🗢 😫 🤫	🖾 🔣 🗅 🖉 🕹							° 0	04/0	5/2008

Puis lancer les calculs avec "*Calculate*". On obtient directement la "*SS residual*" = 242.33 (fig. 3.17).

Figure 3.17 : fenêtre de WinNonlin donnant la SS des résiduelles et la variance des résiduelles (15.14)

International formation of the second s	0	1:WocumVexe	emple3_v	alidation.pwo]											-
Iterate Minds Effects Workbooks (Minited 16) (Dorived) Image: New Yorkbooks (Minited 16) (Dorived) A1 Tesponse Total Observations 24 F G H I J K L M N 1 Total Observations Used response Total Observations Used Observations Used response 24 F G H I J K L M N 2 response Observations Used response 223 3767 Image: Comparison Observations (Section States) Image: Comparison Observation Observations (Section States) <td< th=""><th>conc</th><th></th><th></th><th>back cal</th><th>Davidation®</th><th></th><th></th><th></th><th>V</th><th>1.1</th><th></th><th></th><th>0</th><th>P</th><th>0</th></td<>	conc			back cal	Davidation®				V	1.1			0	P	0
A1 response Diagnostic Value E F G H I J K L M N 1 response Total Observations Used 24	19 🗋 L	inear Mixed Eff	ects Worl	kbook - [Untitled14] (Derived)											
NI Dependent Unit Diagnestic Value E F G H I J K L M N 1 traggonts (response) Observations 24 F G H I J K L M N 1 traggonts (response) Observations 24 F G H I J K L M N 1 response Observations Used 24 F F G H I J K L M N 1 response Observations Used 24 344 K <td></td> <td>A1 resn</td> <td>nee</td> <td></td>		A1 resn	nee												
Dependent Units Diagnostic Value E F G H I J K L M N 1 response Total Observations Used 24 -	_	Al Just	51130												
1 Insporte Total Observations 24 2 response Observations Used 24 3 response Observations Used 24 4 1 1 1 1 4 1 1 1 1 1 4 1 1 1 1 1 1 4 1		Dependent	Units	Diagnostic	Value	E	F	G	н	1 I	J	к	L	м	N -
2 response Oberwations Used 24 3 response Oberwations Used 24 4 response Oberwations Used 24 4 response Oberwations Used 24 5 response Restudial SS 24/2337467 6 response Restudial SS 16 7 response Restudial Amore 16 8 response REStudial Amore 16 9 response REStudial Amore 17 9 response Astake's Information Criterin 106.898930 9 response Schwarts' Baysian Criterin 108.898930 10 response Schwarts' Baysian Criterin 108.898930 11 response Schwarts' Baysian Criterin 108.898930 12 response Schwarts' Baysian Criterin 108.898930 13 response Schwarts' Baysian Criterin 108.898930 14 response Schwarts' Baysian Criterin 108.898930 15 </td <td>1</td> <td>response</td> <td></td> <td>Total Observations</td> <td>24</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	1	response		Total Observations	24		-								
3 response Obe. Musing Model Terms 0 4 response Residual SS 242.337467 5 response Residual Varince 15.140502 6 response Residual Varince 15.140502 7 response Residual Varince 15.140502 8 response Residual Varince 15.140502 9 response A24.344 Statilitie 1 9 response A24.344 Statilitie 1 9 response A24.344 Statilitie 1 10 Response 10.38250277 1 11 response A3434 Stationardio Chertonio 108.2825027 1 10 Response 0.134673 1 11 Response 0.134673 1 1 12 Response 10.34673 1 1 13 1 1 1 1 1 1 16 1 1 1 1 1 1 1	2	response		Observations Used	24										
4 response Revidual SS 22/33/47 5 response Revidual Variance 16 6 response Revidual Variance 15 7 response Revidual Variance 16 9 response Revidual Variance 11 9 response Revidual Variance 11 9 response Asakets Information Ciration 115 882973 9 response Schwarzs Paysian Ottomin 115 882972 11 response Schwarzs Paysian Ottomin 115 882973 11 response Schwarzs Paysian Ottomin 115 882972 11 response Schwarzs Paysian Ottomin 115 88297 11 response Schwarzs Paysian Ottomin 115 88297 12 13 13 11 11 11 15 14 11 11 11 11 16 14 11 11 11 11	3	response		Obs. Missing Model Terms	0										
5 response Revidual of 16 6 response Revidual of 16 7 response Revidual variance 4:15.10802 7 response REVIL toglikehindood 44.4445418	4	response		Residual SS	242.337467										
6 response Revidual Variance 15 140802 7 response ReVidual Variance 16 140802 8 response ReVidual Variance 108 080703 9 response A Markel Transmostor Cherring 108 080703 108 080703 11 response A Markel Transmostor Cherring 108 080703 108 080703 11 response A Markel Transmostor Cherring 110 08 09073 100 000 000 0000 11 response 0 034073 100 000000 100 00000000 13 10 100 0000000000000000000000000000000000	5	response		Residual df	16										
7 response REML log(kethloog) -44.4445416 8 response -2 REML log(kethloog) 68.89928 9 response -2 REML log(kethloog) 68.89928 9 response Akakks till formation Citration 106.898928	6	response		Residual Variance	15 146092										
sepone	7	response		REMI log(likelihood)	-44 44496418										
Tresponse Avalaks Is formation Criterion 106.89390 response Schwarzs Beysain Criterion 106.89390 response Schwarzs Beysain Criterion 00.38473 response Plessian eigenvalue 0.034673 District Criterion 106.89390 Schwarzs Beysain Criterion 0.034673 Schwarzs Beysain Criterion 0.03467 Schwarzs Beysain Criterion 0.03467 Schwarzs Beysain Criterion 0.03467 Schwarzs Beysai	8	response		2 * REML log(likelihood)	88 889928										
10 response Schwarz's Bayesian Citerion 113 842227 11 response Hessian eigenvalue 0.034873 12 0.034873 13 14 14 15 16 19 19 Parameters / Final Variance Parameters /	9	response		Akaike's Information Criterion	105 889928										
11 response Hessian algerratue 0.034973 13 1 1 14 1 1 15 1 1 16 1 1 17 1 1 18 1 1 19 1 1 10 1 1 10 1 1 10 1 1	10	resnonse		Schwarz's Rayasian Criterion	113 843227										
12 Provide of the state of the	11	reenonee		Hessian eigenvalue	0.034873										
13 14 15 16 17 18 19 19 19 19 19 19 19 19 19 19	12	response		ricosian eigentaide	0.004010										
14 15 16 17 18 19 19 19 10 17 18 19 19 19 19 19 19 19 19 19 19	13														
15 16 17 18 19 19 19 19 19 19 19 19 19 19	14														
16 17 18 19 14 15 Diagnostics (Sequential Tests / Partial Tests / Final Fixed Parameters / Final Variance Paramet + , , Partial Tests / Partial Tests / Final Fixed Parameters / Final Variance Parameters + , , , , , , , , , , , , , , , , , ,	15														
17 18 19 19 19 19 21 Characteristic A Sequential Tests A Partial Tests A Final Fixed Parameters A Final Variance Paramet	16														
18 19 19 19 19 19 19 19 19 19 19 19 19 19	17														
19 41 N Diagnostics / Sequential Tests / Partial Tests / Final Fixed Parameters / Final Variance Paramet 4 Paead Only Line 1/74	18														
In Diagnostics / Sequential Tests / Panial Tests / Final Fixed Parameters / Final Vanance Paramet Preval Only Ine 1/74	19														
Read Only Line 1/74	. ()	A Discussion	(C	tist Tasks & Datist Tasks & D	and Circuit Dama		Cincel 3 de site	Deres	all all a						-
Read Only Line 1/74		I Diagnostics	V 26dner	ntiai Tests // Partiai Tests // P	inal Fixed Paran	neters /\	Final Vana	ince Param	100 4						
rises only the type		Read Only										Lin	e 17	74	
		ristic only										-	6 17		

Après avoir fait "*Calculate*" la première feuille de résultats (c'est-à-dire celle dont l'onglet est intitulé diagnostic) donne la résiduelle pure qui est 242.233.

Ensuite pour faire le test du lack of fit, on procèdera comme cela a été indiqué précédemment avec les calculs manuels.

3.4.3. Test du lack of fit pour une droite pondérée par 1/X²

Après avoir ajusté les données avec une droite pondérée, le test du lack of fit se fera selon la même procédure mais il faudra tenir compte de la pondération pour calculer les différents termes d'erreur.

Le terme d'erreur pure est obtenu en faisant l'ANOVA (avec la pondération par Weight_X2 (fig 3.18).

Dans WN on peut normaliser (scaling) les poids de telle façon que le total soit égal au nombre des données. Cela ne modifie pas l'ajustement et augmente la stabilité des calculs.

Figure 3.18 : fenêtre permettant de déclarer la pondération, on notera que la case "No scaling of weights" doit être cochée pour obtenir une résiduelle appropriée (non standardisée par WinNonlin).

"Z Wintentin	🔳 🖻 🔀
File Edit Deta Chart Model Tools Window Help	
□·\$P\$ ■ \$P\$ \$P\$ \$P\$ \$P\$ \$P\$ \$P\$ \$P\$ \$P\$ \$P	
Warkbook . [C:Warum Jevennia? validation own]	
C24	
Conc	
(ug/mL) response level weight_x weig Model Options	N O P Q R
1 0.1 0.49 1 10 2 0.1 0.67 1 10 Lipar Model 902 nk	
3 0.1 Discrete for the second	
5 0.25 [stream control of control	
6 0.25 Durport Uptons Weight Trie Linear bettings Units Apply	
8 0.5	
9 0.5 10 1.25	
11 1.25 C Pre-Selected Scheme C Predicted to Power n	
12 1.25 13 2.5	
14 2.5	
10 25 16 5	
17 5	
20 10	1
22 20 f-INT+SLOPZ*t	
23 20 24 20	
25	
26	
28 Read Only	Line 1/6
Sheet1 / History /	
	CAPS NUM
🛃 démarrer 🖉 Page d'accuel de l'ég 📆 WinNorlin 🔛 Microsoft Word	FR P() 18:54
6 / • E C 1 • E I = / • · · · · · · · · · · · · · · · · · ·	Dureau " 💡 04/05/2008

Figure 3.19 : fenêtre pour le calcul de l'erreur pure pour une régression avec une pondération de 1/X². On doit d'abord déclarer les variables (Weight_2 comme regressors/covariates) ensuite et ensuite seulement, glisser le vecteur des "*Weight_variable*". On doit déclarer "*Level*" comme classification variables et "*Response*" comme "*Dependent variable*". Le modèle est à un facteur (level) à glisser dans "*Model specification*" puis faire "*Calculate*".

File Edit	lonlin Data Chart	Model Too	ils Window	Help					_/				
🗋 - 🖬	· 🖬 🚳 🔞	🕺 🕰 👩	3 🛷 🕾	ੈ‡↓ f≈	la 16 ft 🗷 🔥		122 04	ð	/				
						\mathbf{i}			/				
🖻 w	orkbook - [C	:\Docum	\exemple3	_validatio	n.pwo]			/	/			_	
	G24							/		-			
	conc (ug/ml)	response	level	weight_x	T LinMix Fixed E	lfects	u		×	0	Р	Q	Т
1	0.1	0.49	1	10	Variable Collection	Sort Variables	Begressors/Covaria	tes Weight Variable	Clear Model				Ť
2	0.1	0.67	1	10	conc		weight_x2	weight_x2					
3	0.1	0.52	2	10	back_calc				Load		-		
5	0.25	1.01	2	4	Deviation%				Save As.				t
6	0.25	1.07	2	4		1							
7	0.5	2.13	3	2		Classification Variables	Dependent Variable	E Fixed Effects	Previous				+
9	0.5	2.13	3	2		level	response	Confidence Level 95 %	1000et				+
10	1.25	7.24	4	0.8				Dependent Variables					
11	1.25	5.82	4	0.8				Transformation					
12	1.25	5.75	4	0.8				None					
14	2.5	11.8	5	0.4	Model Specification								
15	2.5	11.3	5	0.4	level								
16	5	22	6	0.2				- No laboration					
17	5	23	6	0.2	1) wo Turescebr				-	
10	10	43	7	0.2					-		-		
20	10	46	7	0.1	1		1		1				
21	10	38	7	0.1	Help	< Back	Nest >	Calculate Cancel					
22	20	119	8	0.05	2000.0		1					-	+
24	20	110	8	0.05	0.0025								
25			-										
26													
27	-												
20													+

Figure 3.20 : Fenêtre donnant le résultat pour le calcul de l'erreur pure pour une régression avec une pondération de $1/X^2$. La SS residual est de 4.747

rkbo 24	ook - [C:	\Docum\exe	mple3_v	ralidation.pwo]												- 101
(uí	ionc g	near Mixed Eff	ects Wor	kbook - [Untitled28] (Derived	Deviation#	u		1	v			N	0	D		
	-	Dependent	Units	Diagnostic	Value	E	F	G	н	1	J	к	L	м	N	-
	1	response		Total Observations	24											
-	2	response		Observations Used	24											
-	3	response		Obs. Missing Model Terms	0											
-	4	response		Residual SS	4.747299											
	5	response		Residual df	16											
	6	response		Residual Variance	0.296706											
	7	response		REML log(likelihood)	-12.98292026											
-	8	response		-2 * REML log(likelihood)	25.965841											
	9	response		Akaike's Information Criterion	43.965841											_
	10	response		Schwarz's Bayesian Criterion	50.919139											
	11	response		Hessian eigenvalue	90.873413											- 1
	12			-											_	-
	13	-														-
	14															-
	15															- 1
	10															-
	40	-														-
	10															-
	13		<u></u>													
	1 1	 Diagnostics 	V Sedne	ntial lests \wedge Partial lests \wedge F	inal Fixed Paran	neters A	, Final Varia	ince Param	iet 4							<u>•</u> •
	B	ead Only										Line	17	75		-
		ous only						1	1		1					

Nous allons maintenant estimer la SS totale en faisant une régression pondérée par 1/X². Pour cela nous allons glisser le vecteur "*Weight_X2*" dans la boite "*Weight on file in colum*" et bien vérifier que la case "*No Scaling of Weights*" est bien cochée (Attention ! jusqu'alors, tous nos calculs ont été réalisés avec des résidus normalisés.

Le calcul de la droite de régression avec une pondération par $1/X^2$ donne une résiduelle de 13.25 pour 22 ddl (fig. 3.21).

Les paramètres de la droite de régression sont obtenus dans la feuille "Final fixed parameters" avec une pente de 4.75 et une ordonnée à l'origine de 0.0501 (fig 3.22). Nous pouvons faire un test de non-linéarité avec cette droite de régression pondérée, la SS lack-of-fit est de :

 $SS_{lack-of-fit} = SS_{totale} - SS_{pure_error}$

$$SS_{lack-of-fit} = 13.2584 - 4.7473 = 8.5111$$

et les variances correspondantes sont :

Variance residuelle =
$$\frac{4.7473}{16} = 0.2967$$

Variance lack - of - fit = $\frac{8.5111}{6} = 1.4185$

et le test
$$F = \frac{1.4185}{0.2967} = 4.781$$

avec $F_{16}^6 = 2.74$ pour P=0.05 et 4.20 pour P=0.01. L'hypothèse de linéarité est donc rejetée pour P<0.01.

Le test de non-linéarité est donc significatif et la droite doit être rejetée.

Face à ce rejet, on peut soit tenter d'ajuster les points avec une courbe c'est-à-dire introduire une composante quadratique soit réduire l'étendue de la gamme.

Nous allons dans la section suivante ajuster les données du tableau 3.1 avec une courbe c'est-à-dire un polynôme du second degré.

Figure 3.21 : Fenêtre donnant le résultat pour le calcul de l'erreur résiduelle pour une régression avec une pondération de $1/X^{2}$. La SS residual est de 13.258 et elle correspond à la somme de l'erreur pure et du lack of fit

Figure 3.22 : fenêtre donnant les paramètres de la droite de régression avec une pondération de $1/X^{2}$ la pente est de 4.7501 et l'intercept de 0.051

nNon	lin																
dit D	ata Char	rt Model	Tools	Window	Help	5 DF		XX 101 6									
÷ .		8 <u>8</u> 4		🔷 ~11	2+ J× :	25 LA BN		00 12 3	한민지로운		_	_	_	_	_	_	-
			n\exe		validatio												
G24	4																
CIE-	conc						back cal										-
	(ug/mL)	respon	ise le	evel	weight_x	weight_xz	(ug/mL)	Deviatio	-n% H	I J	K L	m	N	0	Р	ų	R
	0	1 1	AU	Ti leti	10	100	11							-			
	ŏ	e cinea	ii chart	- Loun	tied i i J (t	perived)											
4	0.1	B I	inear W	orkhool	k . El Intitl	ed311 (Der	ive d)										ПŘ
	0.		1.1	INT	r found	capil (ser	(100)										
	0		AI	list		December 199											
	0		Para	meter	Units	Estimate	StdError	CV%	UnivarCI_Lower	UnivarCl_Upper	PlanarCl_Lower	PlanarCl_Upper	J	к	L	м	Ē
	1.	1	INT			0.050075	0.049390	98.63	-0.052353	0.152502	-0.082586	0.182736					
	- 14	2	SLOP	PE		4.750065	0.191964	4.04	4.351960	5.148171	4.234450	5.265680		-		-	
	14	4															
t	2	5															
	2	6															
	_	7															
	_	8															
	-	10															-
		11															
		12															
		13	_														
		14															
	- 1	16															
		17															
		18															
		19	0 5: 1	_		-	15.15		(1	10 101 1						
V a	Sheet1 /	(FL)	\ Final	Parame	eters / N	on-Transpos	ed Final Pa	rameters	∧ Correlation Mat	rix 🔨 Eigenvalues	∧ Conditi] •			Line	17105		•
_																	CAPS I
																	6
	arrer				indiana and	A whorener											d dme
		6	60	🖪 G	🕙 🧶 🛙	7 💷 🖬 🤊	- 8 V E	S K 🗅								° 🛛	04/05

Pour réaliser un ajustement avec une composante quadratique, on reprend le même module et on sélectionne le modèle quadratique comme indiqué sur la figure 3.23. Le poids sélectionné sera 1/X ; la case "No scaling of Weights" sera cochée.

Figure 3.23 : Fenêtre montrant comment monter le modèle avec une composante quadratique et une pondération de 1/X

	level	weight_x	weight_x2	back_calc (ug/mL) Deviation% H	I J	к	L M	N	0	Р	Q	R
0.49	1	10	100	(-9)								
.1 0.67	1	10	100	PK/PD/NCA Analysis Wizard: 1	//inNonlin Compiled /	lo dels						
1 0.52	1	10	100									
25 1.11	2	4	16	Select a Linear model				n -				
25 1.01	2	4	16		1		1					
20 1.07	2	4	16				/					
5 2.13	3	2	4	f=60+617+6272			/					
5 2.33	3	2	4			\	/		-			
25 7.24	4	0.8	0.64			1	/					
25 5.82	4	0.8	0.64			1	/					
25 5.75	4	0.8	0.64				/					
5 14.4	5	0.4	0.16			\sim						
5 11.8	5	0.4	0.16									
5 11.3	6	0.4	0.16									
5 22	6	0.2	0.04	Model Description				^	-			
5 23	6	0.2	0.04	503 Quadratic								
10 /3	7	0.2	0.04	SU4 CUDIC								
10 46	7	0.1	0.01									
10 38	7	0.1	0.01									
20 119	8	0.05	0.0025					-				
20 130	8	0.05	0.0025									
20 110	8	0.05	0.0025	Help	< Back	Next > Fir	ish Cance					
						-						
	1 0.49 1 0.67 1.1 0.67 2.1 1.67 2.5 1.01 25 1.01 25 1.01 25 1.01 25 1.01 25 1.01 25 2.13 5.5 2.23 5 5.56 2.5 5.575 5 2.23 5 2.23 5 2.23 5 2.23 5 2.23 5 2.23 5 2.23 5 2.24 5 2.21 10 4.3 10 4.6 10 1.00 20 1.10 20 1.10	1 0.677 1 1 0.677 1 10 0.521 1 0 25 1.01 2 2 25 1.01 2 2 25 1.01 2 2 25 1.01 2 2 25 5 2.13 3 25 5 7.24 4 45 5 6.74 4 45 5 7.24 4 55 5 7.24 4 45 5 6.74 4 45 5 5 7.24 6 2.2 6 6 5 2.13 3 6 5 2.2 6 6 7 10 4.6 7 10 4 0.0 4.6 7 10 8 2.0 13.0 6 2 110	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1 0.02 1 1.0 0.01 DOMD/IC4 Analysis Wizard. 1 0.02 1 0.01 DOMD/IC4 Analysis Wizard. 15 1.11 2 4 10 25 1.01 2.4 10 55 1.01 2.4 10 55 1.01 2.4 10 56 2.33 3 2 57 7.24 4 0.8 55 5.75 4 0.8 0.64 55 5.75 4 0.8 0.64 56 5.21 6 0.2 0.04 57 7.24 4 0.8 0.64 56 5.21 6 0.2 0.04 57 7.24 4 0.8 0.64 57 1.0 0.0 0.002 0.004 57 2.1 6 0.2 0.04 57 2.1 6 0.2 0.04	1 0.49 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0.49 1 100 1 0.49 1 100 1 0.52 100 25 1.10 2 4 16 5 1.07 2 4 16 5 1.07 2 4 16 5 1.07 2 4 16 5 1.07 2 4 16 5 2.13 3 2 16 5 2.13 3 2 16 5 2.13 3 2 16 5 5.75 4 0 8 06 5 1.13 5 0 4 0.16 5 1.22 6 0 2 0.06 5 1.13 5 0 4 0.16 5 1.23 6 0 2 0.06 5 1.13 5 0 4 0.16 5 1.23 6 0 2 0.06 5 1.13 5 0 4 0.16 5 1.23 6 0 2 0.06 5 2.23 6 0 2 0.06 5 2.24 6 0 2 0.06 5 2.25 6 0 2 0.06 5 2.25 6 0 2 0.06 5 2.26 6 0 0 0.00 5 2.26 6 0 0 0 0.00 5 2.26 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0.67 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0.49 1 1 10 10 10 PX/20/16.4 Analysis Wizard: Withfordin Compiled Models 1 0.65 1 10 2 4 16 5 107 2 4 16 5 107 2 4 16 5 2 13 3 2 4 5 2 23 3 3 2 5 2 23 3 3 2 5 2 23 3 3 2 5 5 7 7.24 4 0 8 0 6 5 5 7 7.24 4 0 8 0 6 5 5 6 7 7 4 0 8 0 6 5 5 7 7 4 4 0 8 0 6 5 5 7 7 4 0 8 0 6 5 5 7 7 4 0 8 0 6 5 5 7 7 4 0 8 0 6 5 7 7 4 0 8 0 5 7	1 0.49 1 1 00 1 0.49 1 1 00 1 0.52 1 00 5 1.01 2 4 16 5 1.07 2 4 16 5 1.07 2 4 16 5 1.07 2 4 16 5 2.13 3 2 4 5 2.13 3 2 5 5 2.13 3 2 5 5 7.24 4 08 05 5 5.75 4 0 8 05 5 1.13 5 0 4 0.16 5 1.13 5 0 4 0.16 5 1.13 5 0 4 0.16 5 1.22 6 0 2 0.05 5 2.21 6 0 2 0.05 5 1.13 5 0 4 0.16 5 1.13 5 0 4 0.16 0 4 0.16 5 1.13 5 0 4 0 4 0 4 0 4 0	1 0.67 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0.49 1 1 10 10 10 10 10 10 10 10 10 10 10 10

Les paramètres de la courbe sont :

 $Y = 3.761 X + 0.1037 X^2 + 0.2641$ (fig 3.24).

Figure 3.24 : Fenêtre donnant les paramètres d'un ajustement impliquant une composante quadratique et une pondération de 1/X (A0=intercept, A1 = pente de la composante linéaire ; A2 = pente de la composante quadratique). La résiduelle est de 38.2742 (voir l'onglet "*Diagnostic*") et la variance résiduelle de 1.822. Il s'agit de la "*Residual SS*" correspondant à la somme totale des carrés résiduels (lack of fit et pure error).

inear	Chart - [Unti	tled12] (I	Derived)												R
) Lin /	ear Workboo	k - [Untit	led32j (Der	ived)											1
	Parameter	Units	Estimate	StdError	CV%	UnivarCI_Lower	UnivarCI_Upper	PlanarCl_Lower	PlanarCl_Upper	J	к	L	м	-	
1	AD		0.264112	0.211561	80.10	-0.175849	0.704073	-0.383294	0.911518						
2	A1		3.767065	0.302299	8.02	3.138404	4.395725	2.841987	4.692142						
3	A2		0.103/29	0.019050	18.37	0.064112	0.143345	0.045432	U.162U25		-		-	-81	
5	-														
6															
7															
8															
9															
10															
12															
13															
14															
15															
16															
18															
C.P	Initial Daram	atore X h	Ainimization	Process &	Final Par	amaters & Non-Tro	nencead Final Pa	amatara [4]						· Č	
-														V	1
B	ead Only										Line	1/180			4
et1 A	History /	_							1					-	

Nous pourrions à nouveau faire un test de "Linearité" par rapport à cette équation. Une alternative est d'inspecter l'intervalle de confiance de la pente de la composante quadratique (entre 0.045 et 0.162 voir la figure 3.24). Ce qui veut dire que la composante quadratique est significative car l'IC exclut la valeur zéro.

Une approche plus simple consiste à faire une évaluation visuelle à la fois de l'ajustement (fig. 3.25) et des résidus pondérés (3.26).

Figure 3.25 : Données du tableau 3.1 ajustées avec une courbe ayant une composante linéaire et quadratique. L'inspection de la figure suggère un bon ajustement par rapport à celui de la figure 3.9.

Figure 3.26 : Répartition des résidus pondérés par un ajustement impliquant une composante quadratique. Il apparaît que la répartition des résidus est plutôt satisfaisante (surtout par rapport à ce qui a été vu précédemment sur la fig. 3.10).

L'inspection des résidus montre une amélioration apportée avec la composante quadratique (par rapport à la figure 3.10) même s'il reste encore une forme de banane. C'est donc la back-calculation qui dira si on peut ou non garder cette courbe. Pour cela on doit trouver les racines d'une équation du second degré c'est-à-dire résoudre l'équation :

 $Y = aX^{2} + bX + c \text{ ou encore } aX^{2} + bX + c - Y = 0$

Soit ici Y = $0.1037X^2 + 3.7671 X + 0.2641$

Rappelons que le déterminant est : $\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

La figure 3.27 donne les valeurs calculées par étalonnage inverse. On constate que certaines d'entre elles dépassent largement les 20% en terme de déviation.

$$X = solution = \frac{-b \pm \sqrt{b^2 - 4a \times (c - y)}}{2a}$$

Par exemple pour la réponse 0.49, la concentration prédite est :

$$X = \frac{-3.761 \pm \sqrt{3.761^2 + 4 \times 0.1037 \times 0.22}}{2 \times 0.10} = 0.0599$$

On pourra utiliser pour ces calculs soit une feuille EXCEL soit une feuille de WinNonlin après avoir effectué la commande "*Detach*".

Figure 3.27 : concentrations calculées par étalonnage inverse par le modèle avec une composante quadratique et une pondération de 1/X

Wir	Nonlin - [Wor	kbook - [l	Untitled5]	(Detached)]					Saturo	day - Augus	: 19 - 7:19	AM - 83 MB		2
- Hie	Edit Data Cr	hart Model	I TOOIS WI	naow Help			1000 A. 141 - 2						-	•
] • (≝ 🖬 😂 🔞	3 HB	🛍 ダ M] ĝ, <i>f</i> ∗ ;		S 🚯 🚯 🛍	國際區名	<u>業 19</u> 1日日	4 (1)					
L	21													
	Dependent	conc	réponse	weighing1	Observed	Predicted	c_moins_y	discriminant	back_calc	deviation	к	L	м	
1	réponse	0.1	0.49	10	0.49	0.6418556671	-0.2259	3.7795166	0.0598679	-40.13211				
2	réponse	0.1	0.67	10	0.67	0.6418556671	-0.4059	3.78938118	0.107431	7.4309564				
3	réponse	0.1	0.52	10	0.52	0.6418556671	-0.2559	3.781162484	0.0678037	-32.19632				
4	réponse	0.25	1.11	4	1.11	1.2123611	-0.8459	3.813387173	0.2231783	-10.72869				
5	réponse	0.25	1.01	4	1.01	1.2123611	-0.7459	3.807944554	0.1969361	-21.22555				
6	réponse	0.25	1.07	4	1.07	1.2123611	-0.8059	3.811211058	0.2126859	-14.92564				
7	réponse	0.5	2.13	2	2.13	2.173576349	-1.8659	3.868464518	0.4887392	-2.252152				
8	réponse	0.5	2.13	2	2.13	2.173576349	-1.8659	3.868464518	0.4887392	-2.252152				
9	réponse	0.5	2.33	2	2.33	2.173576349	-2.0659	3.8791723	0.5403679	8.0735772				
10	réponse	1.25	7.24	0.8	7.24	5.135018548	-6.9759	4.133357682	1.7659483	41.275866				
11	réponse	1.25	5.82	0.8	5.82	5.135018548	-5.5559	4.061481224	1.4193887	13.551099				
12	réponse	1.25	5.75	0.8	5.75	5.135018548	-5.4859	4.057905091	1.4021461	12.171684				
13	réponse	2.5	14.4	0.4	14.4	10.33007705	-14.1359	4.478237793	3.4288225	37.152901				
14	réponse	2.5	11.8	0.4	11.8	10.33007705	-11.5359	4.356160434	2.8402142	13.60857				
15	réponse	2.5	11.3	0.4	11.3	10.33007705	-11.0359	4.332289664	2.7251189	9.0047567				
16	réponse	5	22	0.2	22	21.69264971	-21.7359	4.817374153	5.0640027	1.2800533				
17	réponse	5	23	0.2	23	21.69264971	-22.7359	4.860235975	5.2706653	5.4133052				
18	réponse	5	21	0.2	21	21.69264971	-20.7359	4.774127536	4.8554847	-2.890305				
19	réponse	10	43	0.1	43	48.30761764	-42.7359	5.649592351	9.0766266	-9.233734				
20	réponse	10	46	0.1	46	48.30761764	-45,7359	5.758671177	9.6025611	-3.974389				
21	réponse	10	38	0.1	38	48.30761764	-37.7359	5.462956501	8.176743	-18.23257				
22	réponse	20	119	0.05	119	117.0968439	-118,7359	7.965092198	20.241042	1.2052121				
23	réponse	20	130	0.05	130	117.0968439	-129.7359	8.246544351	21.598092	7.9904617				
24	réponse	20	110	0.05	110	117.0968439	-109.7359	7.72719184	19.093982	-4.530091				
25														
26														
27														
28														
29														T
30														
31														
1	Diagnostics /	K Sequent	tial Tests /	Partial Tes	ts A Final I	ixed Parameter	s 🖌 Final Varia	ncellel						
			/ /				, ,					-	CAPS N	IIM
-						10. 10.00 T							L 07.	10
<mark>7</mark> d	emarrer		WinNonlin		WinNonlin	n - [Workboo								
		2.44	s 🗰 🧑		65 49 PT		- HT - 22						a Satur	uay

Cela nous incite à explorer la pondération de 1/X². La variance résiduelle est de 0.45 avec une Residual SS de 9.5056.

Les paramètres estimés sont : $Y = 0.1163 X^2 + 4.2625 X + 0.0691$ Nous allons inspecter les résidus pondérés (fig. 3.28). Ils sont ici présentés en %.

L'inspection de la figure 3.28 donne une répartition des résidus similaire à celle qui avait été obtenue avec une pondération de 1/X.

Figure 3.28 : résidus obtenus par le modèle avec une composante quadratique et une pondération de $1/X^{\rm 2}$

Pour juger de l'intérêt de cette pondération nous allons procéder au calcul par étalonnage inverse en repartant de la feuille obtenue avec "*Summary table*". Après avoir effectué un "*Detach*", la racine pour la réponse observée de 0.49 est de 0.0984. Pour la valeur observée de 110, la racine est de 17.466, pour une concentration nominale de 20 soit une déviation de 12.67%

La figure 3.29 donne les résultats. Il apparaît que certaines déviations dépassent les 20% et cette courbe quadratique n'est pas acceptable. La solution va consister à en réduire l'étendue.

Figure 3.29 : Calcul par calibration inverse (back calculation) des concentrations nominales pour une courbe avec une composante quadratique et un facteur de pondération de $1/X^{\rm 2}$

				-												-
level	weight	x2 conc_o (ug/ml	bs response_obs	conc (ug/mL)	response	Predicted	C_MOINS_Y	Back_calc	deviation	к	L	м	N	0	Р	
	1	100 0	0.49	0.1000	0.4900	0.6419	-0.4209	0.09848025353	1.519746465							
	1	100 0	1.1 0.67	0.1000	0.6700	0.6419	-0.6009	0.1404354994	-40.43549943							
	1	100 0	0.52	0.1000	0.5200	0.6419	-0.4509	0.1064794268	-5.479426798							
	2	16 0.	25 1.11	0.2500	1.1100	1.2124	-1.0409	0.242593677	2.962529201							
	2	10 0.	25 1.01	0.2500	1.0100	1.2124	-0.9409	0.2194253252	12.2298699							
	2	4 0	20 1.07	0.2500	2.1200	1.2124	-1.0009	0.235529607	0.0000/7105 4.542040454							
	3	4 0	15 2.15	0.5000	2.1300	2.1736	-2.0609	0.4772802977	4.543940454							
	3	4 0	15 2.33	0.5000	2 3300	2 1736	-2 2609	0.5229546268	-4.590925358							
	4 0	.64 1.	25 7.24	1.2500	7.2400	5.1350	-7.1709	1.611469385	-28.91755082							
	4 (.64 1.	25 5.82	1.2500	5.8200	5.1350	-5.7509	1.302870183	-4.229614657							
	4 0	.64 1.	25 5.75	1.2500	5.7500	5.1350	-5.6809	1.287531966	-3.00255728							
	5 0	.16 2	14.4	2.5000	14.4000	10.3301	-14.3309	3.099901075	-23.99604298							
	5 0	.16 2	11.8	2.5000	11.8000	10.3301	-11.7309	2.571671674	-2.866866943							
	5 0	.16	11.3	2.5000	11.3000	10.3301	-11.2309	2.468550779	1.257968843							
	6 0	.04	5 22	5.0000	22.0000	21.6926	-21.9309	4.574198508	8.516029836							
	6 0	.04	5 23	5.0000	23.0000	21.6926	-22.9309	4.761177158	4.776456833							
	6 0	.04	6 21	5.0000	21.0000	21.6926	-20.9309	4.385680532	12.28638935							
	7 1	.01	10 43	10.0000	43.0000	48.30/6	-42.9309	8.225659003	17.74340997							
	7 0	.01	10 46	10.0000	46.0000	48.3076	-45.9309	8.707062735	12.92937265							
	2 00	106	10 30	10.0000	110,0000	40.3070	-57.9309	10 621631076	20.9000924							
	8 0.0	125	20 113	20.0000	130,0000	117.0968	-179 9309	10.33102103	1.034313044		1					
	8 0.0	125	20 130	20.0000	110.0000	117.0968	-109 9309	17 46641592	12.66792042	_	•					
	-															
		_														
				_												

Nous allons exclure les données obtenues avec la concentration 20 pour ne faire les calculs que sur une étendue de 0.1 à 10 (fig. 3.30).

Figure 3.30 : sélection des données pour calculer une courbe de calibration "abrégée". Pour limiter les valeurs à 10, aller dans "*Data*" et faire "*Exclude > selection*"

Recalculer avec un facteur de pondération 1/X

L'inspection des résidus (fig 3.31) indique une bonne répartition des résidus.

Figure 3.31 : Répartition des résidus pour une courbe de calibration avec une composante quadratique obtenue pour les concentrations nominales allant de 0.1 à 10, avec un facteur de pondération de 1/X et une composante quadratique.

L'équation prédite est :

 $Y = -0.007983X^2 + 4.91629 - 0.070548$

L'inspection des intervalles de confiance de la pente pour la composante quadratique (0.007983) n'est pas significative (fig. 3.32), ce qui suggère qu'une simple droite peut être adéquate.

Figure 3.32 : Fenêtre donnant les résultats de l'ajustement des données allant de 0.1 à 10 avec une composante quadratique et pondérées par 1/Y²

Avec le modèle linéaire simple et une pondération de 1/X², la pente est de 4.476 et l'ordonnée à l'origine de 0.089185.

La figure 3.33 montre la répartition des résidus qui semble adéquate.

Les back-calculations donnent dans l'ensemble des résultats acceptables seules 2 valeurs sur les 21 dépassant la marge des 20%. Il est probable que l'analyste gardera cette courbe car les déviations sont vues pour deux niveaux différents de concentrations (0.8 et 10).

Figure 3.33 : Répartition des résidus pour un ajustement des données du tableau 3.1 (après avoir supprimé les données de la concentration 20). Les données ont été ajustées avec une simple droite et un facteur de pondération de 1/X².

